cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A085361 Decimal expansion of the number c = Sum_{n>=1} (zeta(n+1)-1)/n.

Original entry on oeis.org

7, 8, 8, 5, 3, 0, 5, 6, 5, 9, 1, 1, 5, 0, 8, 9, 6, 1, 0, 6, 0, 2, 7, 6, 3, 2, 3, 4, 5, 4, 5, 5, 4, 6, 6, 6, 4, 7, 2, 7, 4, 9, 6, 6, 8, 2, 2, 3, 2, 8, 1, 6, 4, 9, 7, 5, 5, 1, 5, 6, 4, 0, 2, 3, 0, 1, 7, 8, 0, 6, 4, 3, 5, 6, 3, 3, 0, 1, 6, 2, 2, 8, 7, 4, 7, 1, 5, 9, 2, 1, 3, 3, 2, 2, 4, 3, 1, 9, 6, 7, 5, 6
Offset: 0

Views

Author

Eric W. Weisstein, Jun 25 2003

Keywords

Comments

The Alladi-Grinstead constant (A085291) is exp(c-1).

Examples

			0.78853056591150896106027632345455466647274966822328164975515640230178...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(120)); L:=RiemannZeta(); (&+[(Evaluate(L,n+1)-1)/n: n in [1..1000]]); // G. C. Greubel, Nov 15 2018
  • Maple
    evalf(sum((Zeta(n+1)-1)/n, n=1..infinity), 120); # Vaclav Kotesovec, Dec 11 2015
    evalf(Sum(-(-1)^k*Zeta(1, k), k = 2..infinity), 120); # Vaclav Kotesovec, Jun 18 2021
  • Mathematica
    Sum[(-1+Zeta[1+n])/n,{n,Infinity}]
    NSum[Log[k]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms ->5000, Method -> {NIntegrate, MaxRecursion -> 100}] (* Vaclav Kotesovec, Dec 11 2015 *)
  • PARI
    suminf(n=1,(zeta(n+1)-1-2^(-n-1))/n)+log(2)/2 \\ Charles R Greathouse IV, Feb 20 2012
    
  • PARI
    sumalt(k=2, -(-1)^k * zeta'(k)) \\ Vaclav Kotesovec, Jun 17 2021
    
  • Sage
    import mpmath
    mpmath.mp.pretty=True; mpmath.mp.dps=108 #precision
    mpmath.nsum(lambda n: (-1+mpmath.zeta(1+n))/n, [1,mpmath.inf]) # Peter Luschny, Jul 14 2012
    
  • Sage
    numerical_approx(sum((zeta(k+1)-1)/k for k in [1..1000]), digits=120) # G. C. Greubel, Nov 15 2018
    

Formula

Equals Sum_{n>=2} log(n/(n-1))/n = Sum_{n>=1, k>=2} 1/(n*k^(n+1)). [From Mathworld links]
Equals -Sum_{k>=2} (-1)^k * zeta'(k). - Vaclav Kotesovec, Jun 17 2021
Equals log(A245254) = Sum_{k>=1} log(k)/(k*(k+1)). - Amiram Eldar, Jun 27 2021
Equals -log(A242624). - Amiram Eldar, Feb 06 2022

A242624 Decimal expansion of Product_{n>1} (1-1/n)^(1/n).

Original entry on oeis.org

4, 5, 4, 5, 1, 2, 1, 8, 0, 5, 1, 4, 6, 4, 6, 3, 1, 7, 0, 3, 2, 8, 0, 1, 4, 6, 3, 6, 8, 4, 3, 2, 7, 3, 9, 9, 3, 0, 7, 5, 8, 6, 8, 1, 2, 2, 6, 9, 9, 5, 4, 4, 3, 6, 0, 4, 9, 3, 4, 8, 9, 2, 3, 6, 5, 9, 2, 7, 0, 7, 6, 1, 5, 1, 1, 2, 3, 2, 6, 2, 5, 1, 5, 6, 1, 0, 0, 1, 5, 4, 0, 9, 6, 0, 5, 5, 4, 2, 4, 9
Offset: 0

Views

Author

Jean-François Alcover, May 19 2014

Keywords

Examples

			0.4545121805146463170328014636843273993...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.9, pp. 121-122.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); L:=RiemannZeta();  Exp((&+[(Evaluate(L,n)-1)/(1-n): n in [2..10^3]])); // G. C. Greubel, Nov 15 2018
    
  • Maple
    evalf(exp(-sum((1-Zeta(n))/(1-n), n=2..infinity)), 120); # Vaclav Kotesovec, Dec 11 2015
  • Mathematica
    Exp[-NSum[(1-Zeta[n])/(1-n), {n, 2, Infinity}, NSumTerms -> 300, WorkingPrecision -> 110]] // RealDigits[#, 10, 100]& // First
  • PARI
    default(realprecision, 100); exp(suminf(n=2, (zeta(n)-1)/(1-n))) \\ G. C. Greubel, Nov 15 2018
    
  • Sage
    numerical_approx(exp(sum((zeta(k)-1)/(1-k) for k in [2..1000])), digits=100) # G. C. Greubel, Nov 15 2018

Formula

From Amiram Eldar, Feb 06 2022: (Start)
Equals exp(-A085361).
Equals 1/A245254. (End)

Extensions

Mma modified and data extended by Jean-François Alcover, May 23 2014

A383855 The n-th term of the sequence is k after every k*(k+1)/2 occurrences of 1, with multiple values following a 1 listed in order.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 4, 1, 1, 2, 3, 1, 1, 1, 2, 5, 1, 1, 1, 2, 3, 1, 1, 4, 1, 2, 6, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 7, 1, 1, 2, 3, 4, 5, 1, 1, 1, 2, 1, 1, 1, 2, 3, 8, 1, 1, 1, 2, 1, 4, 1, 1, 2, 3, 6, 1, 1, 1, 2, 5, 9, 1, 1, 1, 2, 3, 1, 1, 4, 1, 2, 1, 1, 1, 2, 3, 1, 10
Offset: 1

Views

Author

Jwalin Bhatt, May 12 2025

Keywords

Comments

The frequencies of the terms follow the Yule-Simon distribution with parameter value 1. The geometric mean approaches A245254 in the limit.

Examples

			After every ((2*3)/2=3) ones we see a 2,
after every ((3*4)/2=6) ones we see a 3,
after every ((4*5)/2=10) ones we see a 4 and so on.
		

Crossrefs

Programs

  • Python
    from itertools import islice
    def beta_distribution_generator():
        num_ones, num_reached = 0, 1
        while num_ones := num_ones+1:
            yield 1
            for num in range(2, num_reached+2):
                if num_ones % (num*(num+1)//2) == 0:
                    yield num
                    num_reached += num == num_reached+1
    A383855 = list(islice(beta_distribution_generator(), 120))

A383899 A sequence constructed by greedily sampling the Yule-Simon distribution for parameter value 1, to minimize discrepancy selecting the smallest value in case of ties.

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 6, 1, 2, 1, 3, 1, 7, 1, 2, 1, 8, 1, 9, 1, 2, 1, 4, 1, 3, 1, 2, 1, 10, 1, 11, 1, 2, 1, 3, 1, 5, 1, 2, 1, 4, 1, 12, 1, 2, 1, 3, 1, 13, 1, 2, 1, 6, 1, 14, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 15, 1, 2, 1, 7, 1, 3, 1, 2, 1, 16, 1, 17
Offset: 1

Views

Author

Jwalin Bhatt, May 14 2025

Keywords

Comments

The geometric mean approaches A245254 in the limit.
The probability mass function of the Yule-Simon distribution with parameter 1 is given by p(k) = 1/(k*(k+1)) for k >= 1.

Examples

			Let p(k) denote the probability of k and c(k) denote the number of occurrences of k among the first n-1 terms; then the expected number of occurrences of k among n random terms is given by n*p(k).
We subtract the actual occurrences c(k) from the expected occurrences and pick the one with the highest value.
| n | n*p(1) - c(1) | n*p(2) - c(2) | n*p(3) - c(3) | choice |
|---|---------------|---------------|---------------|--------|
| 1 |     0.5       |     0.166     |     0.083     |   1    |
| 2 |     0         |     0.333     |     0.166     |   2    |
| 3 |     0.5       |    -0.5       |     0.25      |   1    |
| 4 |     0         |    -0.333     |     0.333     |   3    |
| 5 |     0.5       |    -0.166     |    -0.583     |   1    |
		

Crossrefs

Programs

  • Mathematica
    probCountDiff[j_, k_, count_]:=k/(j*(j+1))-Lookup[count, j, 0]
    samplePDF[n_]:=Module[{coeffs, unreachedVal, counts, k, probCountDiffs, mostProbable},
      coeffs=ConstantArray[0, n]; unreachedVal=1; counts=<||>;
      Do[probCountDiffs=Table[probCountDiff[i, k, counts], {i, 1, unreachedVal}];
        mostProbable=First@FirstPosition[probCountDiffs, Max[probCountDiffs]];
        If[mostProbable==unreachedVal, unreachedVal++]; coeffs[[k]]=mostProbable;
        counts[mostProbable]=Lookup[counts, mostProbable, 0]+1; , {k, 1, n}]; coeffs]
    A383899=samplePDF[120]

A272286 Decimal expansion of Product_{k >= 1} (k*(k+1))^(-1/(k*(k+1))), a constant related to the alternating Lüroth representations of real numbers.

Original entry on oeis.org

1, 2, 9, 2, 1, 5, 0, 1, 8, 4, 0, 6, 0, 9, 9, 8, 4, 1, 3, 4, 1, 5, 7, 1, 9, 0, 0, 0, 7, 4, 2, 1, 9, 7, 7, 7, 1, 5, 7, 3, 3, 6, 4, 6, 2, 0, 3, 8, 6, 7, 8, 7, 4, 4, 8, 7, 7, 3, 0, 0, 0, 6, 2, 5, 3, 9, 4, 0, 0, 9, 6, 1, 8, 2, 9, 7, 1, 0, 4, 2, 7, 5, 4, 0, 3, 9, 6, 8, 0, 5, 6, 7, 7, 5, 3, 6, 5, 4, 5, 1, 7, 7, 3, 3, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 24 2016

Keywords

Examples

			0.1292150184060998413415719000742197771573364620386787448773...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.

Crossrefs

Programs

  • Mathematica
    digits = 105; Exp[-NSum[((1 + (-1)^(n + 1))*Zeta[n + 1] - 1)/n, {n, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> 2 digits, NSumTerms -> 200]] // RealDigits[#, 10, digits]& // First

Formula

Exp(-Sum_{n >= 1} (((1 + (-1)^(n+1))*Zeta(n+1) - 1)/n)). - After Vaclav Kotesovec's formula for A244109.

Extensions

Offset corrected by Andrey Zabolotskiy, Dec 12 2023
Showing 1-5 of 5 results.