cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A085361 Decimal expansion of the number c = Sum_{n>=1} (zeta(n+1)-1)/n.

Original entry on oeis.org

7, 8, 8, 5, 3, 0, 5, 6, 5, 9, 1, 1, 5, 0, 8, 9, 6, 1, 0, 6, 0, 2, 7, 6, 3, 2, 3, 4, 5, 4, 5, 5, 4, 6, 6, 6, 4, 7, 2, 7, 4, 9, 6, 6, 8, 2, 2, 3, 2, 8, 1, 6, 4, 9, 7, 5, 5, 1, 5, 6, 4, 0, 2, 3, 0, 1, 7, 8, 0, 6, 4, 3, 5, 6, 3, 3, 0, 1, 6, 2, 2, 8, 7, 4, 7, 1, 5, 9, 2, 1, 3, 3, 2, 2, 4, 3, 1, 9, 6, 7, 5, 6
Offset: 0

Views

Author

Eric W. Weisstein, Jun 25 2003

Keywords

Comments

The Alladi-Grinstead constant (A085291) is exp(c-1).

Examples

			0.78853056591150896106027632345455466647274966822328164975515640230178...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(120)); L:=RiemannZeta(); (&+[(Evaluate(L,n+1)-1)/n: n in [1..1000]]); // G. C. Greubel, Nov 15 2018
  • Maple
    evalf(sum((Zeta(n+1)-1)/n, n=1..infinity), 120); # Vaclav Kotesovec, Dec 11 2015
    evalf(Sum(-(-1)^k*Zeta(1, k), k = 2..infinity), 120); # Vaclav Kotesovec, Jun 18 2021
  • Mathematica
    Sum[(-1+Zeta[1+n])/n,{n,Infinity}]
    NSum[Log[k]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms ->5000, Method -> {NIntegrate, MaxRecursion -> 100}] (* Vaclav Kotesovec, Dec 11 2015 *)
  • PARI
    suminf(n=1,(zeta(n+1)-1-2^(-n-1))/n)+log(2)/2 \\ Charles R Greathouse IV, Feb 20 2012
    
  • PARI
    sumalt(k=2, -(-1)^k * zeta'(k)) \\ Vaclav Kotesovec, Jun 17 2021
    
  • Sage
    import mpmath
    mpmath.mp.pretty=True; mpmath.mp.dps=108 #precision
    mpmath.nsum(lambda n: (-1+mpmath.zeta(1+n))/n, [1,mpmath.inf]) # Peter Luschny, Jul 14 2012
    
  • Sage
    numerical_approx(sum((zeta(k+1)-1)/k for k in [1..1000]), digits=120) # G. C. Greubel, Nov 15 2018
    

Formula

Equals Sum_{n>=2} log(n/(n-1))/n = Sum_{n>=1, k>=2} 1/(n*k^(n+1)). [From Mathworld links]
Equals -Sum_{k>=2} (-1)^k * zeta'(k). - Vaclav Kotesovec, Jun 17 2021
Equals log(A245254) = Sum_{k>=1} log(k)/(k*(k+1)). - Amiram Eldar, Jun 27 2021
Equals -log(A242624). - Amiram Eldar, Feb 06 2022

A124175 Decimal expansion of Product_{primes p} ((p-1)/p)^(1/p).

Original entry on oeis.org

5, 5, 9, 8, 6, 5, 6, 1, 6, 9, 3, 2, 3, 7, 3, 4, 8, 5, 7, 2, 3, 7, 6, 2, 2, 4, 4, 2, 2, 3, 4, 1, 6, 7, 1, 7, 2, 5, 7, 6, 6, 6, 3, 7, 0, 2, 1, 2, 9, 0, 6, 0, 3, 9, 5, 5, 4, 2, 3, 3, 9, 3, 3, 9, 3, 5, 2, 0, 3, 1, 7, 1, 7, 9, 7, 5, 9, 1, 5, 9, 3, 6, 2, 7, 6, 5, 4, 0, 9, 5, 0, 6, 3, 0, 6, 6, 5, 4, 7
Offset: 0

Views

Author

David W. Wilson, Dec 05 2006

Keywords

Comments

This might be interpreted as the expected value of phi(n)/n for very large n.

Examples

			0.5598656169323734857237622442234167172576663702129060395542339339\
352031717975915936276540950630665470795373094197373037280781542375...
		

Crossrefs

Programs

  • Mathematica
    digits = 100; s = Exp[-NSum[PrimeZetaP[h+1]/h, {h, 1, Infinity}, WorkingPrecision -> digits+5, NSumTerms -> 3 digits]]; RealDigits[s, 10, digits][[1]] (* Jean-François Alcover, Dec 07 2015, after Robert Gerbicz *)
  • PARI
    default(realprecision,256);(f(k)=return(sum(n=1,512,moebius(n)/n*log(zeta(k*n)))));exp(sum(h=1,512,-1/h*f(h+1))) /* Robert Gerbicz */
    
  • PARI
    exp(-suminf(m=2,log(zeta(m))*sumdiv(m,k,if(kMartin Fuller */

Formula

exp(-suminf(h=1, primezeta(h+1)/h)). - Robert Gerbicz
[Notation not clear. Is this perhaps exp(-Sum_{h=1..oo} primezeta(h+1)/h) ? - N. J. A. Sloane, Oct 08 2017]
Equals exp(1) * lim_{n->infinity} (A001088(n)/n!)^(1/n). - Vaclav Kotesovec, Feb 05 2016

Extensions

Robert Gerbicz computed this to 130 decimal places.

A245254 Decimal expansion of U = Product_{k>=1} (k^(1/(k*(k+1)))), a Khintchine-like limiting constant related to Lüroth's representation of real numbers.

Original entry on oeis.org

2, 2, 0, 0, 1, 6, 1, 0, 5, 8, 0, 9, 9, 0, 2, 6, 5, 5, 3, 1, 9, 4, 5, 5, 7, 8, 6, 6, 5, 5, 9, 9, 4, 4, 8, 7, 2, 6, 8, 5, 6, 6, 2, 3, 2, 4, 7, 5, 2, 7, 2, 3, 8, 8, 8, 7, 2, 3, 1, 4, 5, 1, 1, 7, 7, 6, 3, 1, 6, 9, 0, 1, 1, 2, 6, 9, 6, 6, 5, 9, 4, 7, 5, 8, 4, 7, 0, 2, 9, 7, 3, 4, 7, 2, 6, 8, 0, 7, 6, 2, 5, 8, 1, 6, 1
Offset: 1

Views

Author

Jean-François Alcover, Jul 15 2014

Keywords

Comments

The geometric mean of the Yule-Simon distribution with parameter value 1 (A383855) approaches this constant. In general, the geometric mean of the Yule-Simon distribution approaches Product_{k>=2} k^(1/(p*Beta(k,p+1))). - Jwalin Bhatt, May 12 2025

Examples

			2.200161058099026553194557866559944872685662324752723888723145117763169...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.

Crossrefs

Programs

  • Maple
    evalf(exp(Sum((Zeta(n+1)-1)/n, n=1..infinity)), 120); # Vaclav Kotesovec, Dec 11 2015
  • Mathematica
    Exp[NSum[Log[k]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 5000, Method -> {NIntegrate, MaxRecursion -> 100}]] (* Vaclav Kotesovec, Dec 11 2015 *)

Formula

Equals exp(A085361).
U*V*W = 1, where V is A244109 and W is A131688.
Equals e * A085291. - Amiram Eldar, Jun 27 2021
Equals 1/A242624. - Amiram Eldar, Feb 06 2022

Extensions

Corrected by Vaclav Kotesovec, Dec 11 2015

A242623 Decimal expansion of Product_{n>1} (1+1/n)^(1/n).

Original entry on oeis.org

1, 7, 5, 8, 7, 4, 3, 6, 2, 7, 9, 5, 1, 1, 8, 4, 8, 2, 4, 6, 9, 9, 8, 9, 6, 8, 4, 9, 6, 6, 1, 9, 3, 2, 0, 8, 5, 3, 4, 2, 8, 1, 0, 3, 9, 3, 3, 8, 2, 4, 6, 9, 0, 9, 8, 8, 7, 8, 4, 0, 0, 3, 9, 7, 7, 2, 0, 5, 1, 9, 5, 0, 2, 4, 9, 0, 3, 5, 3, 1, 9, 1, 1, 4, 3, 3, 6, 8, 9, 0, 2, 2, 6, 5, 2, 5, 6, 7, 5, 8, 6, 9, 8
Offset: 1

Views

Author

Jean-François Alcover, May 19 2014

Keywords

Examples

			1.758743627951184824699896849661932...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.9 p. 122.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); L:=RiemannZeta(); Exp((&+[(-1)^n*(Evaluate(L,n)-1)/(n-1): n in [2..10^3]])); // G. C. Greubel, Nov 15 2018
    
  • Maple
    evalf(exp(sum((-1)^(n+1)*Zeta(n+1)/n, n=1..infinity))/2, 120); # Vaclav Kotesovec, Dec 11 2015
  • Mathematica
    Exp[NSum[((-1)^n*(-1 + Zeta[n]))/(n - 1), {n, 2, Infinity}, NSumTerms -> 300, WorkingPrecision -> 105] ] // RealDigits[#, 10, 103]& // First (* edited by Jean-François Alcover, May 23 2014 *)
  • PARI
    default(realprecision, 100); exp(suminf(n=2, (-1)^n*(zeta(n)-1)/(n-1))) \\ G. C. Greubel, Nov 15 2018
    
  • SageMath
    numerical_approx(exp(sum((-1)^k*(zeta(k)-1)/(k-1) for k in [2..1000])), digits=100) # G. C. Greubel, Nov 15 2018

Formula

Equals exp(A131688)/2.

Extensions

Data extended by Jean-François Alcover, May 23 2014

A244625 Decimal expansion of Product_{n>1} (1 - 1/n^2)^(1/n).

Original entry on oeis.org

7, 9, 9, 3, 7, 0, 4, 0, 1, 3, 0, 6, 3, 3, 2, 8, 7, 8, 9, 8, 7, 2, 5, 2, 8, 5, 3, 9, 7, 5, 3, 5, 2, 5, 6, 6, 8, 7, 7, 7, 0, 2, 3, 5, 0, 8, 4, 3, 4, 8, 4, 1, 2, 5, 8, 9, 1, 9, 6, 3, 4, 3, 3, 1, 2, 8, 7, 0, 8, 3, 1, 9, 9, 7, 1, 7, 6, 1, 4, 6, 0, 5, 9, 5, 7, 1, 7, 7, 6, 5, 9, 7, 0, 3, 7, 2, 4, 7, 5, 3, 5, 1
Offset: 0

Views

Author

Jean-François Alcover, Jul 02 2014

Keywords

Examples

			0.7993704013063328789872528539753525668777...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.9 Alladi-Grinstead Constant, p. 122.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); L:=RiemannZeta();  Exp(-(&+[(Evaluate(L, 2*n+1)-1)/n: n in [1..10^3]])); // G. C. Greubel, Nov 15 2018
    
  • Maple
    evalf(exp(-sum((Zeta(2*n+1)-1)/n, n=1..infinity)), 120); # Vaclav Kotesovec, Dec 11 2015
  • Mathematica
    digits = 102; Exp[-NSum[(Zeta[2*n+1]-1)/n, {n, 1, Infinity}, NSumTerms -> 300, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First
  • PARI
    default(realprecision, 100); exp(-suminf(n=1, (zeta(2*n+1)-1)/n)) \\ G. C. Greubel, Nov 15 2018
    
  • Sage
    numerical_approx(exp(-sum((zeta(2*n+1)-1)/n for n in [1..1000])), digits=100) # G. C. Greubel, Nov 15 2018

Formula

Equals exp(-Sum_{n>0} (zeta(2*n+1) - 1)/n).
Equals A242623 * A242624.
Also equals A242623 * exp(-A085361).
Showing 1-5 of 5 results.