cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A085291 Decimal expansion of Alladi-Grinstead constant exp(c-1), where c is given in A085361.

Original entry on oeis.org

8, 0, 9, 3, 9, 4, 0, 2, 0, 5, 4, 0, 6, 3, 9, 1, 3, 0, 7, 1, 7, 9, 3, 1, 8, 8, 0, 5, 9, 4, 0, 9, 1, 3, 1, 7, 2, 1, 5, 9, 5, 3, 9, 9, 2, 4, 2, 5, 0, 0, 0, 3, 0, 4, 2, 4, 2, 0, 2, 8, 7, 1, 5, 0, 4, 2, 9, 9, 9, 0, 1, 2, 5, 1, 6, 5, 4, 7, 3, 2, 2, 3, 1, 1, 5, 1, 8, 4, 0, 7, 8, 1, 9, 7, 2, 3, 6, 1, 6, 9, 1, 5
Offset: 0

Views

Author

Eric W. Weisstein, Jun 25 2003

Keywords

Comments

Named after the Indian-American mathematician Krishnaswami Alladi (b. 1955) and the American mathematician Charles Miller Grinstead (b. 1952). - Amiram Eldar, Jun 15 2021

Examples

			0.80939402054063913071793188059409131721595399242500030424202871504...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 120-122.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B22.

Crossrefs

Programs

  • Maple
    evalf(exp(sum((Zeta(n+1)-1)/n, n=1..infinity)-1), 120); # Vaclav Kotesovec, Dec 11 2015
  • Mathematica
    $MaxExtraPrecision = 256; RealDigits[ Exp[ Sum[ N[(-1 + Zeta[1 + n])/n, 256], {n, 350}] - 1], 10, 111][[1]] (* Robert G. Wilson v, Nov 23 2005 *)
  • PARI
    exp(suminf(n=1, (zeta(n+1)-1)/n) - 1) \\ Michel Marcus, May 19 2020

Formula

Equals exp(c-1), where c is Sum_{n>=1} (zeta(n+1) - 1)/n (cf. A085361).
Equals lim_{n->oo} (Product_{k=1..n} (k/n)*floor(n/k))^(1/n). - Benoit Cloitre, Jul 15 2022

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jun 24 2003

A010786 Floor-factorial numbers: a(n) = Product_{k=1..n} floor(n/k).

Original entry on oeis.org

1, 1, 2, 3, 8, 10, 36, 42, 128, 216, 600, 660, 3456, 3744, 9408, 18900, 61440, 65280, 279936, 295488, 1152000, 2116800, 4878720, 5100480, 31850496, 41472000, 93450240, 163762560, 568995840, 589317120, 3265920000, 3374784000, 11324620800, 19269550080, 42188636160
Offset: 0

Views

Author

Keywords

Comments

Product floor(n/1)*floor(n/2)*floor(n/3)*...*floor(n/n).
a(n) is the number of functions f:[n]->[n] where f(x) is a multiple of x for all x in [n]. We note that there are floor[n/x] possible choices for each image of x under f. [Dennis P. Walsh, Nov 06 2014]

Examples

			For n=4 the a(4)=8 functions are given by the image sequences <1,2,3,4>, <1,4,3,4>, <2,2,3,4>, <2,4,3,4>, <3,2,3,4>, <3,4,3,4>, <4,2,3,4>, and <4,4,3,4>. [_Dennis P. Walsh_, Nov 06 2014]
		

Crossrefs

Programs

  • Haskell
    a010786 n = product $ map (div n) [1..n]
    -- Reinhard Zumkeller, Feb 26 2012
    
  • Magma
    [&*[n div i: i in [1..n]]: n in [1..35]]; // Vincenzo Librandi, Oct 03 2018
  • Maple
    a := n -> mul( floor(n/k), k=1..n);
  • Mathematica
    Table[Product[Floor[n/k],{k,n}],{n,40}] (* Harvey P. Dale, May 09 2017 *)
  • PARI
    vector(50, n, prod(k=1, n, n\k)) \\ Michel Marcus, Nov 10 2014
    

Formula

a(n+1) = a(n)*A208449(n)/A208450(n). - Reinhard Zumkeller, Feb 26 2012
GCD(a(n), a(n+1)) = A208448(n). - Reinhard Zumkeller, Feb 26 2012
From Vaclav Kotesovec, Oct 03 2018: (Start)
log(a(n)) ~ c * (n - log(2*Pi*n)/2), where c = 0.7885...
Conjecture: c = A085361. (End)
From Ridouane Oudra, Jan 18 2025: (Start)
a(n) = Product_{k=1..n} ((k+1)/k)^floor(n/(k+1)).
a(n) = Product_{k=1..n} k^A075993(n, k).
a(n) = A092143(n)/f(n), where f(n) = Product_{k=1..n} ((floor(n/k)-1)!).
a(n) = A092143(n)/g(n), where g(n) = Product_{k=1..n} A377484(k).
a(n)/a(n-1) = A007955(n)/A377484(n). (End)

Extensions

More terms from Hieronymus Fischer, Jul 08 2007
Edited by N. J. A. Sloane, Jul 05 2008 at the suggestion of Rick L. Shepherd
a(0)=1 prepended by Alois P. Heinz, Oct 30 2023

A131688 Decimal expansion of the constant Sum_{k>=1} log(k + 1) / (k * (k + 1)).

Original entry on oeis.org

1, 2, 5, 7, 7, 4, 6, 8, 8, 6, 9, 4, 4, 3, 6, 9, 6, 3, 0, 0, 0, 9, 8, 9, 9, 8, 3, 0, 4, 9, 5, 8, 8, 1, 5, 2, 8, 5, 1, 1, 5, 4, 0, 8, 9, 0, 5, 0, 8, 8, 8, 4, 8, 6, 8, 9, 7, 7, 5, 4, 0, 8, 3, 3, 5, 2, 2, 5, 4, 9, 9, 9, 4, 8, 9, 3, 7, 4, 4, 9, 3, 4, 9, 7, 0, 7, 9, 0, 4, 7, 3, 1, 5, 0, 1, 9, 0, 9, 7, 8, 2, 4, 5, 4, 8
Offset: 1

Views

Author

R. J. Mathar, Sep 14 2007

Keywords

Comments

Given A131385(n) = Product_{k=1..n} floor((n+k)/k), then limit A131385(n+1)/A131385(n) = exp(c), where c = this constant. - Paul D. Hanna, Nov 26 2012
Closely related to A085361 (the exponent in the definition of A085291). - Yuriy Sibirmovsky, Sep 04 2016

Examples

			1.257746886944369630009899830495881528511540890508884868977540833522...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, page 62. [Jean-François Alcover, Mar 21 2013]

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); L:=RiemannZeta(); (&+[(-1)^(n+1)*Evaluate(L,n+1)/n: n in [1..10^3]]); // G. C. Greubel, Nov 15 2018
    
  • Maple
    evalf(sum((-1)^(n+1)*Zeta(n+1)/n, n=1..infinity), 120); # Vaclav Kotesovec, Dec 11 2015
    evalf(Sum(-Zeta(1, k), k = 2..infinity), 120); # Vaclav Kotesovec, Jun 18 2021
  • Mathematica
    Sum[ -Zeta'[1 + k], {k, 1, Infinity}] (* Vladimir Reshetnikov, Dec 28 2008 *)
    Integrate[EulerGamma/x + PolyGamma[0, 1+x]/x, {x, 0, 1}] // N[#, 105]& // RealDigits[#][[1]]& (* or *) Integrate[x*Log[x]/((1-x)*Log[1-x]), {x, 0, 1}] // N[#, 105]& // RealDigits[#][[1]]& (* Jean-François Alcover, Feb 04 2013 *)
    $MaxExtraPrecision = 200; NIntegrate[HarmonicNumber[t]/t, {t, 0, 1}, WorkingPrecision -> 105] (* Yuriy Sibirmovsky, Sep 04 2016 *)
    digits = 120; RealDigits[NSum[(-1)^(n + 1)*Zeta[n + 1]/n, {n,1,Infinity}, NSumTerms -> 20*digits, WorkingPrecision -> 10*digits, Method -> "AlternatingSigns"], 10, digits][[1]] (* G. C. Greubel, Nov 15 2018 *)
  • PARI
    sumalt(s=1, (-1)^(s+1)/s*zeta(s+1) )
    
  • PARI
    suminf(k=2, -zeta'(k)) \\ Vaclav Kotesovec, Jun 17 2021
    
  • SageMath
    numerical_approx(sum((-1)^(k+1)*zeta(k+1)/k for k in [1..1000]), digits=100) # G. C. Greubel, Nov 15 2018

Formula

Equals Sum_{s>=1} (-1)^(s+1)*zeta(s+1)/s.
Equals Sum_{k>=1} -zeta'(1 + k), where Zeta' is the derivative of the Riemann zeta function. - Vladimir Reshetnikov, Dec 28 2008
Equals Sum_{s>=1} log(1+1/s)/s. - Jean-François Alcover, Mar 26 2013
Equals Integral_{t=0..1} H(t)/t dt. Compare to A001620 = Integral_{t=0..1} H(t) dt. Where H(t) are generalized harmonic numbers. - Yuriy Sibirmovsky, Sep 04 2016
Equals lim_{n->oo} log(d(n!))*log(n)/n, where d(n) is the number of divisors of n (A000005) (Erdős et al., 1996). - Amiram Eldar, Nov 07 2020

Extensions

Extended to 105 digits by Jean-François Alcover, Feb 04 2013

A131385 Product ceiling(n/1)*ceiling(n/2)*ceiling(n/3)*...*ceiling(n/n) (the 'ceiling factorial').

Original entry on oeis.org

1, 1, 2, 6, 16, 60, 144, 672, 1536, 6480, 19200, 76032, 165888, 1048320, 2257920, 8294400, 28311552, 126904320, 268738560, 1470873600, 3096576000, 16094453760, 51385466880, 175814737920, 366917713920, 2717245440000, 6782244618240, 22754631352320, 69918208819200
Offset: 0

Views

Author

Hieronymus Fischer, Jul 08 2007

Keywords

Comments

From R. J. Mathar, Dec 05 2012: (Start)
a(n) = b(n-1) because a(n) = Product_{k=1..n} ceiling(n/k) = Product_{k=1..n-1} ceiling(n/k) = n*Product_{k=2..n-1} ceiling(n/k) = Product_{k=1..1} (1+(n-1)/k)*Product_{k=2..n-1} ceiling(n/k).
The cases of the product are (i) k divides n but does not divide n-1, ceiling(n/k) = n/k = 1 + floor((n-1)/k), (ii) k does not divide n but divides n-1, ceiling(n/k) = 1 + (n-1)/k = 1 + floor((n-1)/k) and (iii) k divides neither n nor n-1, ceiling(n/k) = 1 + floor((n-1)/k).
In all cases, including k=1, a(n) = Product_{k=1..n-1} (1+floor((n-1)/k)) = Product_{k=1..n-1} floor(1+(n-1)/k) = b(n-1).
(End)
a(n) is the number of functions f:D->{1,2,..,n-1} where D is any subset of {1,2,..,n-1} and where f(x) == 0 (mod x) for every x in D. - Dennis P. Walsh, Nov 13 2015

Examples

			From _Paul D. Hanna_, Nov 26 2012: (Start)
Illustrate initial terms using formula involving the floor function []:
  a(1) = 1;
  a(2) = [2/1] = 2;
  a(3) = [3/1]*[4/2] = 6;
  a(4) = [4/1]*[5/2]*[6/3] = 16;
  a(5) = [5/1]*[5/2]*[7/3]*[8/4] = 60;
  a(6) = [6/1]*[7/2]*[8/3]*[9/4]*[10/5] = 144.
Illustrate another alternative generating method:
  a(1) = 1;
  a(2) = (2/1)^[1/1] = 2;
  a(3) = (2/1)^[2/1] * (3/2)^[2/2] = 6;
  a(4) = (2/1)^[3/1] * (3/2)^[3/2] * (4/3)^[3/3] = 16;
  a(5) = (2/1)^[4/1] * (3/2)^[4/2] * (4/3)^[4/3] * (5/4)^[4/4] = 60.
(End)
For n=3 the a(3)=6 functions f from subsets of {1,2} into {1,2} with f(x) == 0 (mod x) are the following: f=empty set (since null function vacuously holds), f={(1,1)}, f={(1,2)}, f={(2,2)}, f={(1,1),(2,2)}, and f={(1,2),(2,2)}. - _Dennis P. Walsh_, Nov 13 2015
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(ceil(n/k), k=1..n):
    seq(a(n), n=0..40); # Dennis P. Walsh, Nov 13 2015
  • Mathematica
    Table[Product[Ceiling[n/k],{k,n}],{n,25}] (* Harvey P. Dale, Sep 18 2011 *)
  • PARI
    a(n)=prod(k=1,n-1,floor((n+k-1)/k)) \\ Paul D. Hanna, Feb 01 2013
    
  • PARI
    a(n)=prod(k=1,n-1,((k+1)/k)^floor((n-1)/k))
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Feb 01 2013

Formula

a(n) = Product_{k=1..n} ceiling(n/k).
Formulas from Paul D. Hanna, Nov 26 2012: (Start)
a(n) = Product_{k=1..n-1} floor((n+k-1)/k) for n>1.
a(n) = Product_{k=1..n-1} ((k+1)/k)^floor((n-1)/k) for n>1.
Limits: Let L = limit a(n+1)/a(n) = 3.51748725590236964939979369932386417..., then
(1) L = exp( Sum_{n>=1} log((n+1)/n) / n ) ;
(2) L = 2 * exp( Sum_{n>=1} (-1)^(n+1) * Sum_{k>=2} 1/(n*k^(n+1)) ) ;
(4) L = exp( Sum_{n>=1} (-1)^(n+1) * zeta(n+1)/n ) ;
(5) L = exp( Sum_{n>=1} log(n+1) / (n*(n+1)) ) = exp(c) where c = constant A131688.
Compare L to Alladi-Grinstead constant defined by A085291 and A085361.
(End)
a(n) = A308820(n)/A092143(n-1) for n > 0. - Ridouane Oudra, Sep 28 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 30 2023

A075885 a(n) = 1 + n + n*[n/2] + n*[n/2]*[n/3] + n*[n/2]*[n/3]*[n/4] +... where [x]=floor(x).

Original entry on oeis.org

1, 2, 5, 10, 29, 46, 169, 239, 745, 1450, 4111, 5182, 27157, 33164, 84001, 186496, 610065, 713474, 3061009, 3526553, 13783421, 27380452, 63264389, 71240523, 444872761, 620729126, 1400231613, 2615011102, 9094701085, 10008828958
Offset: 0

Views

Author

Paul D. Hanna, Oct 16 2002

Keywords

Comments

Conjecture: limit a(n)^(1/n) = L where L = 2.200161058099... is the geometric mean of Luroth expansions, where log(L) = Sum_{n>=1} log(n)/(n*(n+1)) = 0.7885305659115... (cf. A085361).
Compare the definition of a(n) to the exponential series:
exp(n) = 1 + n + n*(n/2) + n*(n/2)*(n/3) + n*(n/2)*(n/3)*(n/4) +...

Examples

			a(5) = 1 + 5 + 5[5/2] + 5[5/2][5/3] + 5[5/2][5/3][5/4] + 5[5/2][5/3][5/4][5/5] = 1 + 5 + 5*2 + 5*2*1 + 5*2*1*1 + 5*2*1*1*1 = 46.
		

Crossrefs

Programs

  • PARI
    {a(n)=1+sum(m=1,n,prod(k=1,m,floor(n/k)))}
    for(n=0,60,print1(a(n),", "))
    
  • PARI
    a(n)=my(k=1);1+sum(m=1,n,k*=n\m) \\ Charles R Greathouse IV, Feb 20 2012

Formula

a(n) = 1 + Sum_{m=1..n} Product_{k=1..m} floor(n/k).

A135291 Product of the nonzero exponents in the prime factorization of n!.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 8, 8, 14, 28, 64, 64, 100, 100, 220, 396, 540, 540, 768, 768, 1152, 1944, 4104, 4104, 5280, 7920, 16560, 21528, 31200, 31200, 40768, 40768, 48608, 78120, 161280, 230400, 277440, 277440, 571200, 907200, 1108080, 1108080, 1440504, 1440504, 2019168
Offset: 0

Views

Author

Leroy Quet, Dec 03 2007

Keywords

Comments

a(n) = A005361(n!). For n >= 2, a(n) = the number of positive divisors of n! which themselves are each divisible by every prime <= n. For p = any prime, a(p) = a(p-1). a(0)=a(1)=1 because the product of the exponents is over the empty set.

Examples

			6! = 720 has a prime factorization of 2^4 * 3^2 * 5^1. So a(6) = 4*2*1 = 8.
Also, 720 is divisible by a(6)=8 positive divisors which themselves are each divisible by every prime <= 6 (i.e., are each divisible by 2*3*5 = 30): 30, 60, 90, 120, 180, 240, 360, 720.
		

Crossrefs

Programs

  • Maple
    A005361 := proc(n) mul( op(2,i),i=ifactors(n)[2]) ; end: A135291 := proc(n) A005361(n!) ; end: seq(A135291(n),n=0..50) ; # R. J. Mathar, Dec 12 2007
    # second Maple program:
    b:= proc(n) option remember; `if`(n<1, 1,
          b(n-1)+add(i[2]*x^i[1], i=ifactors(n)[2]))
        end:
    a:= n-> mul(i, i=coeffs(b(n))):
    seq(a(n), n=0..44);  # Alois P. Heinz, Jun 02 2025
  • Mathematica
    Table[Product[FactorInteger[n! ][[i, 2]], {i, 1, Length[FactorInteger[n! ]]}], {n, 0, 50}] (* Stefan Steinerberger, Dec 05 2007 *)
    Table[Times@@Transpose[FactorInteger[n!]][[2]],{n,0,50}] (* Harvey P. Dale, Aug 16 2011 *)
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    a(n)=my(s=1); forprime(p=2,n\2, s*=valp(n,p)); s \\ Charles R Greathouse IV, Oct 09 2016
    
  • Python
    from math import prod
    from collections import Counter
    from sympy import factorint
    def A135291(n): return prod(sum((Counter(factorint(i)) for i in range(2,n+1)),start=Counter()).values()) # Chai Wah Wu, Jun 02 2025

Formula

a(n) = A000005(A049614(n)). - Ridouane Oudra, Sep 02 2019
a(n) = exp((n/log(n)) * (Sum_{k=0..M} e_k/log(n)^k) + O(n/log(n)^(M+2))) for any given integer M >= 0, where e_k = k! * Sum_{j=0..k} (1/j!) * Sum_{s>=1} (log(s+1)^j/(s+1))*log(1+1/s) are constants (e_0 = A085361) (De Koninck and Verreault, 2024, p. 54, Theorem 4.4). - Amiram Eldar, Dec 10 2024

Extensions

More terms from Stefan Steinerberger and R. J. Mathar, Dec 05 2007

A242624 Decimal expansion of Product_{n>1} (1-1/n)^(1/n).

Original entry on oeis.org

4, 5, 4, 5, 1, 2, 1, 8, 0, 5, 1, 4, 6, 4, 6, 3, 1, 7, 0, 3, 2, 8, 0, 1, 4, 6, 3, 6, 8, 4, 3, 2, 7, 3, 9, 9, 3, 0, 7, 5, 8, 6, 8, 1, 2, 2, 6, 9, 9, 5, 4, 4, 3, 6, 0, 4, 9, 3, 4, 8, 9, 2, 3, 6, 5, 9, 2, 7, 0, 7, 6, 1, 5, 1, 1, 2, 3, 2, 6, 2, 5, 1, 5, 6, 1, 0, 0, 1, 5, 4, 0, 9, 6, 0, 5, 5, 4, 2, 4, 9
Offset: 0

Views

Author

Jean-François Alcover, May 19 2014

Keywords

Examples

			0.4545121805146463170328014636843273993...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.9, pp. 121-122.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); L:=RiemannZeta();  Exp((&+[(Evaluate(L,n)-1)/(1-n): n in [2..10^3]])); // G. C. Greubel, Nov 15 2018
    
  • Maple
    evalf(exp(-sum((1-Zeta(n))/(1-n), n=2..infinity)), 120); # Vaclav Kotesovec, Dec 11 2015
  • Mathematica
    Exp[-NSum[(1-Zeta[n])/(1-n), {n, 2, Infinity}, NSumTerms -> 300, WorkingPrecision -> 110]] // RealDigits[#, 10, 100]& // First
  • PARI
    default(realprecision, 100); exp(suminf(n=2, (zeta(n)-1)/(1-n))) \\ G. C. Greubel, Nov 15 2018
    
  • Sage
    numerical_approx(exp(sum((zeta(k)-1)/(1-k) for k in [2..1000])), digits=100) # G. C. Greubel, Nov 15 2018

Formula

From Amiram Eldar, Feb 06 2022: (Start)
Equals exp(-A085361).
Equals 1/A245254. (End)

Extensions

Mma modified and data extended by Jean-François Alcover, May 23 2014

A244109 Decimal expansion of a partial sum limiting constant related to the Lüroth representation of real numbers.

Original entry on oeis.org

2, 0, 4, 6, 2, 7, 7, 4, 5, 2, 8, 5, 5, 8, 7, 8, 5, 9, 1, 0, 7, 0, 1, 7, 6, 1, 5, 3, 9, 5, 0, 4, 3, 6, 1, 9, 4, 9, 8, 4, 2, 9, 0, 5, 5, 8, 7, 3, 2, 1, 6, 6, 5, 1, 8, 7, 3, 2, 6, 9, 7, 2, 3, 5, 8, 2, 4, 3, 3, 0, 6, 3, 8, 4, 5, 7, 0, 4, 6, 5, 5, 7, 8, 4, 5, 5, 0, 6, 3, 9, 4, 4, 8, 2, 4, 3, 4, 1, 7, 5, 0, 0, 2, 1, 4
Offset: 1

Views

Author

Jean-François Alcover, Jun 20 2014

Keywords

Examples

			2.04627745285587859107017615395043619498429055873216651873269723582433...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.

Crossrefs

Cf. A002210, A085361. Equals twice A340440.

Programs

  • Magma
    SetDefaultRealField(RealField(120)); L:=RiemannZeta(); (&+[((1-(-1)^n)*Evaluate(L,n+1)-1)/n: n in [1..1000]]); // G. C. Greubel, Nov 15 2018
    
  • Maple
    evalf(Sum(((1 + (-1)^(n+1))*Zeta(n+1) - 1)/n, n=1..infinity), 120); # Vaclav Kotesovec, Dec 11 2015
  • Mathematica
    NSum[Log[k*(k+1)]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 5000, Method -> {NIntegrate, MaxRecursion -> 100}] (* Vaclav Kotesovec, Dec 11 2015 *)
    digits = 120; RealDigits[NSum[((1-(-1)^n)*Zeta[n+1] -1)/n, {n, 1, Infinity}, NSumTerms -> 20*digits, WorkingPrecision -> 10*digits, Method -> "AlternatingSigns"], 10, digits][[1]] (* G. C. Greubel, Nov 15 2018 *)
  • PARI
    default(realprecision, 1000); s = sumalt(n=1, ((1 + (-1)^(n+1))*zeta(n+1) - 1)/n); default(realprecision, 100); print(s) \\ Vaclav Kotesovec, Dec 11 2015
    
  • PARI
    2*suminf(k=1, -zeta'(2*k)) \\ Vaclav Kotesovec, Jun 17 2021
    
  • Sage
    numerical_approx(sum(((1-(-1)^k)*zeta(k+1)-1)/k for k in [1..1000]), digits=120) # G. C. Greubel, Nov 15 2018

Formula

Equals Sum_{k>=1} log(k*(k+1))/(k*(k+1)).
Equals A085361 + A131688. - Vaclav Kotesovec, Dec 11 2015
Equals Sum_{n >=1} ((1 + (-1)^(n+1))*zeta(n + 1) - 1)/n. - G. C. Greubel, Nov 15 2018
Equals 2*Sum_{k>=2} log(k)/(k^2-1) = 2*A340440. - Gleb Koloskov, May 02 2021
Equals -2*Sum_{k>=1} zeta'(2*k). - Vaclav Kotesovec, Jun 17 2021

Extensions

Corrected by Vaclav Kotesovec, Dec 11 2015

A245254 Decimal expansion of U = Product_{k>=1} (k^(1/(k*(k+1)))), a Khintchine-like limiting constant related to Lüroth's representation of real numbers.

Original entry on oeis.org

2, 2, 0, 0, 1, 6, 1, 0, 5, 8, 0, 9, 9, 0, 2, 6, 5, 5, 3, 1, 9, 4, 5, 5, 7, 8, 6, 6, 5, 5, 9, 9, 4, 4, 8, 7, 2, 6, 8, 5, 6, 6, 2, 3, 2, 4, 7, 5, 2, 7, 2, 3, 8, 8, 8, 7, 2, 3, 1, 4, 5, 1, 1, 7, 7, 6, 3, 1, 6, 9, 0, 1, 1, 2, 6, 9, 6, 6, 5, 9, 4, 7, 5, 8, 4, 7, 0, 2, 9, 7, 3, 4, 7, 2, 6, 8, 0, 7, 6, 2, 5, 8, 1, 6, 1
Offset: 1

Views

Author

Jean-François Alcover, Jul 15 2014

Keywords

Comments

The geometric mean of the Yule-Simon distribution with parameter value 1 (A383855) approaches this constant. In general, the geometric mean of the Yule-Simon distribution approaches Product_{k>=2} k^(1/(p*Beta(k,p+1))). - Jwalin Bhatt, May 12 2025

Examples

			2.200161058099026553194557866559944872685662324752723888723145117763169...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.

Crossrefs

Programs

  • Maple
    evalf(exp(Sum((Zeta(n+1)-1)/n, n=1..infinity)), 120); # Vaclav Kotesovec, Dec 11 2015
  • Mathematica
    Exp[NSum[Log[k]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 5000, Method -> {NIntegrate, MaxRecursion -> 100}]] (* Vaclav Kotesovec, Dec 11 2015 *)

Formula

Equals exp(A085361).
U*V*W = 1, where V is A244109 and W is A131688.
Equals e * A085291. - Amiram Eldar, Jun 27 2021
Equals 1/A242624. - Amiram Eldar, Feb 06 2022

Extensions

Corrected by Vaclav Kotesovec, Dec 11 2015

A208060 a(n) = 1 + 2*n + 2^2*n*[n/2] + 2^3*n*[n/2]*[n/3] + 2^4*n*[n/2]*[n/3]*[n/4] + ... where [x]=floor(x).

Original entry on oeis.org

1, 3, 13, 43, 233, 611, 4405, 10515, 64145, 218755, 1215821, 2689083, 28162105, 61179795, 307475813, 1236997051, 8042542625, 17101581699, 146671231501, 309740445795, 2415132010441, 8877053064643, 40919003272005, 85564885298027, 1068638260341937, 2783025471994851
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2012

Keywords

Comments

Compare the definition of a(n) to the exponential series:
exp(2*n) = 1 + 2*n + 2^2*n*(n/2) + 2^3*n*(n/2)*(n/3) + 2^4*n*(n/2)*(n/3)*(n/4) + ...
Conjecture: limit a(n)^(1/n) = 2*L where L = 2.200161058099... is the geometric mean of Luroth expansions, where log(L) = Sum_{n>=1} log(n)/(n*(n+1)) = 0.7885305659115... (cf. A085361).

Examples

			a(5) = 1 + 2*5+ 4*5[5/2] + 8*5[5/2][5/3] + 16*5[5/2][5/3][5/4] + 32*5[5/2][5/3][5/4][5/5] = 1 + 2*5 + 4*5*2 + 8*5*2*1 + 16*5*2*1*1 + 32*5*2*1*1*1 = 611.
		

Crossrefs

Cf. A075885.

Programs

  • PARI
    {a(n)=1+sum(m=1, n, prod(k=1, m, 2*floor(n/k)))}
    
  • PARI
    /* More efficient: variant of a program by Charles R Greathouse IV */
    {a(n)=my(k=1); 1+sum(m=1, n, k*=2*(n\m))}
    for(n=0, 60, print1(a(n), ", "))

Formula

a(n) = 1 + Sum_{m=1..n} Product_{k=1..m} 2^k*floor(n/k).
Showing 1-10 of 13 results. Next