A085291 Decimal expansion of Alladi-Grinstead constant exp(c-1), where c is given in A085361.
8, 0, 9, 3, 9, 4, 0, 2, 0, 5, 4, 0, 6, 3, 9, 1, 3, 0, 7, 1, 7, 9, 3, 1, 8, 8, 0, 5, 9, 4, 0, 9, 1, 3, 1, 7, 2, 1, 5, 9, 5, 3, 9, 9, 2, 4, 2, 5, 0, 0, 0, 3, 0, 4, 2, 4, 2, 0, 2, 8, 7, 1, 5, 0, 4, 2, 9, 9, 9, 0, 1, 2, 5, 1, 6, 5, 4, 7, 3, 2, 2, 3, 1, 1, 5, 1, 8, 4, 0, 7, 8, 1, 9, 7, 2, 3, 6, 1, 6, 9, 1, 5
Offset: 0
Examples
0.80939402054063913071793188059409131721595399242500030424202871504...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 120-122.
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B22.
Links
- K. Alladi and C. Grinstead, On the decomposition of n! into prime powers, J. Number Theory, Vol. 9, No. 4 (1977), pp. 452-458.
- Simon Plouffe, Alladi-Grinstead Constant.
- Eric Weisstein's World of Mathematics, Alladi-Grinstead Constant.
- Wikipedia, Multiplicative partitions of factorials.
Programs
-
Maple
evalf(exp(sum((Zeta(n+1)-1)/n, n=1..infinity)-1), 120); # Vaclav Kotesovec, Dec 11 2015
-
Mathematica
$MaxExtraPrecision = 256; RealDigits[ Exp[ Sum[ N[(-1 + Zeta[1 + n])/n, 256], {n, 350}] - 1], 10, 111][[1]] (* Robert G. Wilson v, Nov 23 2005 *)
-
PARI
exp(suminf(n=1, (zeta(n+1)-1)/n) - 1) \\ Michel Marcus, May 19 2020
Formula
Equals exp(c-1), where c is Sum_{n>=1} (zeta(n+1) - 1)/n (cf. A085361).
Equals lim_{n->oo} (Product_{k=1..n} (k/n)*floor(n/k))^(1/n). - Benoit Cloitre, Jul 15 2022
Extensions
Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jun 24 2003
Comments