cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A027423 Number of divisors of n!.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 30, 60, 96, 160, 270, 540, 792, 1584, 2592, 4032, 5376, 10752, 14688, 29376, 41040, 60800, 96000, 192000, 242880, 340032, 532224, 677376, 917280, 1834560, 2332800, 4665600, 5529600, 7864320, 12165120, 16422912
Offset: 0

Views

Author

Glen Burch (gburch(AT)erols.com), Leroy Quet

Keywords

Comments

It appears that a(n+1)=2*a(n) if n is in A068499. - Benoit Cloitre, Sep 07 2002
Because a(0) = 1 and for all n > 0, 2*a(n) >= a(n+1), the sequence is a complete sequence. - Frank M Jackson, Aug 09 2013
Luca and Young prove that a(n) divides n! for n >= 6. - Michel Marcus, Nov 02 2017

Examples

			a(4) = 8 because 4!=24 has precisely eight distinct divisors: 1, 2, 3, 4, 6, 8, 12, 24.
		

Crossrefs

Cf. A000005, A000142, A062569, A131688, A161466 (divisors of 10!).

Programs

  • Haskell
    a027423 n = f 1 $ map (\p -> iterate (* p) p) a000040_list where
       f y ((pps@(p:_)):ppss)
         | p <= n = f (y * (sum (map (div n) $ takeWhile (<= n) pps) + 1)) ppss
         | otherwise = y
    -- Reinhard Zumkeller, Feb 27 2013
    (Python 3.8+)
    from math import prod
    from collections import Counter
    from sympy import factorint
    def A027423(n): return prod(e+1 for e in sum((Counter(factorint(i)) for i in range(2,n+1)),start=Counter()).values()) # Chai Wah Wu, Jun 25 2022
  • Maple
    A027423 := n -> numtheory[tau](n!);
  • Mathematica
    Table[ DivisorSigma[0, n! ], {n, 0, 35}]
  • PARI
    for(k=0,50,print1(numdiv(k!),", ")) \\ Jaume Oliver Lafont, Mar 09 2009
    
  • PARI
    a(n)=my(s=1,t,tt);forprime(p=2,n,t=tt=n\p; while(tt, t+=tt\=p); s*=t+1); s \\ Charles R Greathouse IV, Feb 08 2013
    

Formula

a(n) <= a(n+1) <= 2*a(n) - Benoit Cloitre, Sep 07 2002
From Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 28 2009: (Start)
Assume, p1,p2...pm are the prime numbers less than or equal to n.
Then, a(n) = Product_{i=1..m} (bi+1), where bk = Sum_{i=1..m} floor(n/pk^i).
For example, if n=5, p1=2,p2=3,p3=5;
b1=floor(5/2)+floor(5/2^2)+floor(5/2^3)+...=2+1+0+..=3 similarly, b2=b3=1;
Thus a(5)=(3+1)(1+1)(1+1)=16. (End)
a(n) = A000005(A000142(n)). - Michel Marcus, Sep 13 2014
a(n) ~ exp(c * n/log(n) + O(n/log(n)^2)), where c = A131688 (Erdős et al., 1996). - Amiram Eldar, Nov 07 2020

A131385 Product ceiling(n/1)*ceiling(n/2)*ceiling(n/3)*...*ceiling(n/n) (the 'ceiling factorial').

Original entry on oeis.org

1, 1, 2, 6, 16, 60, 144, 672, 1536, 6480, 19200, 76032, 165888, 1048320, 2257920, 8294400, 28311552, 126904320, 268738560, 1470873600, 3096576000, 16094453760, 51385466880, 175814737920, 366917713920, 2717245440000, 6782244618240, 22754631352320, 69918208819200
Offset: 0

Views

Author

Hieronymus Fischer, Jul 08 2007

Keywords

Comments

From R. J. Mathar, Dec 05 2012: (Start)
a(n) = b(n-1) because a(n) = Product_{k=1..n} ceiling(n/k) = Product_{k=1..n-1} ceiling(n/k) = n*Product_{k=2..n-1} ceiling(n/k) = Product_{k=1..1} (1+(n-1)/k)*Product_{k=2..n-1} ceiling(n/k).
The cases of the product are (i) k divides n but does not divide n-1, ceiling(n/k) = n/k = 1 + floor((n-1)/k), (ii) k does not divide n but divides n-1, ceiling(n/k) = 1 + (n-1)/k = 1 + floor((n-1)/k) and (iii) k divides neither n nor n-1, ceiling(n/k) = 1 + floor((n-1)/k).
In all cases, including k=1, a(n) = Product_{k=1..n-1} (1+floor((n-1)/k)) = Product_{k=1..n-1} floor(1+(n-1)/k) = b(n-1).
(End)
a(n) is the number of functions f:D->{1,2,..,n-1} where D is any subset of {1,2,..,n-1} and where f(x) == 0 (mod x) for every x in D. - Dennis P. Walsh, Nov 13 2015

Examples

			From _Paul D. Hanna_, Nov 26 2012: (Start)
Illustrate initial terms using formula involving the floor function []:
  a(1) = 1;
  a(2) = [2/1] = 2;
  a(3) = [3/1]*[4/2] = 6;
  a(4) = [4/1]*[5/2]*[6/3] = 16;
  a(5) = [5/1]*[5/2]*[7/3]*[8/4] = 60;
  a(6) = [6/1]*[7/2]*[8/3]*[9/4]*[10/5] = 144.
Illustrate another alternative generating method:
  a(1) = 1;
  a(2) = (2/1)^[1/1] = 2;
  a(3) = (2/1)^[2/1] * (3/2)^[2/2] = 6;
  a(4) = (2/1)^[3/1] * (3/2)^[3/2] * (4/3)^[3/3] = 16;
  a(5) = (2/1)^[4/1] * (3/2)^[4/2] * (4/3)^[4/3] * (5/4)^[4/4] = 60.
(End)
For n=3 the a(3)=6 functions f from subsets of {1,2} into {1,2} with f(x) == 0 (mod x) are the following: f=empty set (since null function vacuously holds), f={(1,1)}, f={(1,2)}, f={(2,2)}, f={(1,1),(2,2)}, and f={(1,2),(2,2)}. - _Dennis P. Walsh_, Nov 13 2015
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(ceil(n/k), k=1..n):
    seq(a(n), n=0..40); # Dennis P. Walsh, Nov 13 2015
  • Mathematica
    Table[Product[Ceiling[n/k],{k,n}],{n,25}] (* Harvey P. Dale, Sep 18 2011 *)
  • PARI
    a(n)=prod(k=1,n-1,floor((n+k-1)/k)) \\ Paul D. Hanna, Feb 01 2013
    
  • PARI
    a(n)=prod(k=1,n-1,((k+1)/k)^floor((n-1)/k))
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Feb 01 2013

Formula

a(n) = Product_{k=1..n} ceiling(n/k).
Formulas from Paul D. Hanna, Nov 26 2012: (Start)
a(n) = Product_{k=1..n-1} floor((n+k-1)/k) for n>1.
a(n) = Product_{k=1..n-1} ((k+1)/k)^floor((n-1)/k) for n>1.
Limits: Let L = limit a(n+1)/a(n) = 3.51748725590236964939979369932386417..., then
(1) L = exp( Sum_{n>=1} log((n+1)/n) / n ) ;
(2) L = 2 * exp( Sum_{n>=1} (-1)^(n+1) * Sum_{k>=2} 1/(n*k^(n+1)) ) ;
(4) L = exp( Sum_{n>=1} (-1)^(n+1) * zeta(n+1)/n ) ;
(5) L = exp( Sum_{n>=1} log(n+1) / (n*(n+1)) ) = exp(c) where c = constant A131688.
Compare L to Alladi-Grinstead constant defined by A085291 and A085361.
(End)
a(n) = A308820(n)/A092143(n-1) for n > 0. - Ridouane Oudra, Sep 28 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 30 2023

A345682 a(n) = n! * Sum_{k=1..n} 1/(k*floor(n/k)).

Original entry on oeis.org

1, 2, 7, 26, 148, 804, 6228, 47424, 441936, 4288320, 50437440, 560373120, 7723935360, 106618256640, 1614841401600, 25127582054400, 446784010444800, 7727747269939200, 152873884406476800, 2966599550251008000, 62987912790921216000, 1378192085174919168000
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[1/(k*Floor[n/k]), {k, 1, n}], {n, 1, 25}]
    Table[n! * Sum[(HarmonicNumber[Floor[n/j]] - HarmonicNumber[Floor[n/(1 + j)]])/j, {j, 1, n}], {n, 1, 25}]
  • PARI
    a(n) = n!*sum(k=1, n, 1/(k*(n\k))); \\ Michel Marcus, Jun 24 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, (1-x^k)*log(1-x^k)/k)/(1-x))) \\ Seiichi Manyama, Jul 23 2022

Formula

a(n) ~ c * n!, where c = Sum_{j>=1} log(1 + 1/j)/j = A131688 = 1.25774...
E.g.f.: -(1/(1-x)) * Sum_{k>0} (1 - x^k) * log(1 - x^k)/k. - Seiichi Manyama, Jul 23 2022

A244109 Decimal expansion of a partial sum limiting constant related to the Lüroth representation of real numbers.

Original entry on oeis.org

2, 0, 4, 6, 2, 7, 7, 4, 5, 2, 8, 5, 5, 8, 7, 8, 5, 9, 1, 0, 7, 0, 1, 7, 6, 1, 5, 3, 9, 5, 0, 4, 3, 6, 1, 9, 4, 9, 8, 4, 2, 9, 0, 5, 5, 8, 7, 3, 2, 1, 6, 6, 5, 1, 8, 7, 3, 2, 6, 9, 7, 2, 3, 5, 8, 2, 4, 3, 3, 0, 6, 3, 8, 4, 5, 7, 0, 4, 6, 5, 5, 7, 8, 4, 5, 5, 0, 6, 3, 9, 4, 4, 8, 2, 4, 3, 4, 1, 7, 5, 0, 0, 2, 1, 4
Offset: 1

Views

Author

Jean-François Alcover, Jun 20 2014

Keywords

Examples

			2.04627745285587859107017615395043619498429055873216651873269723582433...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.

Crossrefs

Cf. A002210, A085361. Equals twice A340440.

Programs

  • Magma
    SetDefaultRealField(RealField(120)); L:=RiemannZeta(); (&+[((1-(-1)^n)*Evaluate(L,n+1)-1)/n: n in [1..1000]]); // G. C. Greubel, Nov 15 2018
    
  • Maple
    evalf(Sum(((1 + (-1)^(n+1))*Zeta(n+1) - 1)/n, n=1..infinity), 120); # Vaclav Kotesovec, Dec 11 2015
  • Mathematica
    NSum[Log[k*(k+1)]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 5000, Method -> {NIntegrate, MaxRecursion -> 100}] (* Vaclav Kotesovec, Dec 11 2015 *)
    digits = 120; RealDigits[NSum[((1-(-1)^n)*Zeta[n+1] -1)/n, {n, 1, Infinity}, NSumTerms -> 20*digits, WorkingPrecision -> 10*digits, Method -> "AlternatingSigns"], 10, digits][[1]] (* G. C. Greubel, Nov 15 2018 *)
  • PARI
    default(realprecision, 1000); s = sumalt(n=1, ((1 + (-1)^(n+1))*zeta(n+1) - 1)/n); default(realprecision, 100); print(s) \\ Vaclav Kotesovec, Dec 11 2015
    
  • PARI
    2*suminf(k=1, -zeta'(2*k)) \\ Vaclav Kotesovec, Jun 17 2021
    
  • Sage
    numerical_approx(sum(((1-(-1)^k)*zeta(k+1)-1)/k for k in [1..1000]), digits=120) # G. C. Greubel, Nov 15 2018

Formula

Equals Sum_{k>=1} log(k*(k+1))/(k*(k+1)).
Equals A085361 + A131688. - Vaclav Kotesovec, Dec 11 2015
Equals Sum_{n >=1} ((1 + (-1)^(n+1))*zeta(n + 1) - 1)/n. - G. C. Greubel, Nov 15 2018
Equals 2*Sum_{k>=2} log(k)/(k^2-1) = 2*A340440. - Gleb Koloskov, May 02 2021
Equals -2*Sum_{k>=1} zeta'(2*k). - Vaclav Kotesovec, Jun 17 2021

Extensions

Corrected by Vaclav Kotesovec, Dec 11 2015

A245254 Decimal expansion of U = Product_{k>=1} (k^(1/(k*(k+1)))), a Khintchine-like limiting constant related to Lüroth's representation of real numbers.

Original entry on oeis.org

2, 2, 0, 0, 1, 6, 1, 0, 5, 8, 0, 9, 9, 0, 2, 6, 5, 5, 3, 1, 9, 4, 5, 5, 7, 8, 6, 6, 5, 5, 9, 9, 4, 4, 8, 7, 2, 6, 8, 5, 6, 6, 2, 3, 2, 4, 7, 5, 2, 7, 2, 3, 8, 8, 8, 7, 2, 3, 1, 4, 5, 1, 1, 7, 7, 6, 3, 1, 6, 9, 0, 1, 1, 2, 6, 9, 6, 6, 5, 9, 4, 7, 5, 8, 4, 7, 0, 2, 9, 7, 3, 4, 7, 2, 6, 8, 0, 7, 6, 2, 5, 8, 1, 6, 1
Offset: 1

Views

Author

Jean-François Alcover, Jul 15 2014

Keywords

Comments

The geometric mean of the Yule-Simon distribution with parameter value 1 (A383855) approaches this constant. In general, the geometric mean of the Yule-Simon distribution approaches Product_{k>=2} k^(1/(p*Beta(k,p+1))). - Jwalin Bhatt, May 12 2025

Examples

			2.200161058099026553194557866559944872685662324752723888723145117763169...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.

Crossrefs

Programs

  • Maple
    evalf(exp(Sum((Zeta(n+1)-1)/n, n=1..infinity)), 120); # Vaclav Kotesovec, Dec 11 2015
  • Mathematica
    Exp[NSum[Log[k]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 5000, Method -> {NIntegrate, MaxRecursion -> 100}]] (* Vaclav Kotesovec, Dec 11 2015 *)

Formula

Equals exp(A085361).
U*V*W = 1, where V is A244109 and W is A131688.
Equals e * A085291. - Amiram Eldar, Jun 27 2021
Equals 1/A242624. - Amiram Eldar, Feb 06 2022

Extensions

Corrected by Vaclav Kotesovec, Dec 11 2015

A242623 Decimal expansion of Product_{n>1} (1+1/n)^(1/n).

Original entry on oeis.org

1, 7, 5, 8, 7, 4, 3, 6, 2, 7, 9, 5, 1, 1, 8, 4, 8, 2, 4, 6, 9, 9, 8, 9, 6, 8, 4, 9, 6, 6, 1, 9, 3, 2, 0, 8, 5, 3, 4, 2, 8, 1, 0, 3, 9, 3, 3, 8, 2, 4, 6, 9, 0, 9, 8, 8, 7, 8, 4, 0, 0, 3, 9, 7, 7, 2, 0, 5, 1, 9, 5, 0, 2, 4, 9, 0, 3, 5, 3, 1, 9, 1, 1, 4, 3, 3, 6, 8, 9, 0, 2, 2, 6, 5, 2, 5, 6, 7, 5, 8, 6, 9, 8
Offset: 1

Views

Author

Jean-François Alcover, May 19 2014

Keywords

Examples

			1.758743627951184824699896849661932...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.9 p. 122.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); L:=RiemannZeta(); Exp((&+[(-1)^n*(Evaluate(L,n)-1)/(n-1): n in [2..10^3]])); // G. C. Greubel, Nov 15 2018
    
  • Maple
    evalf(exp(sum((-1)^(n+1)*Zeta(n+1)/n, n=1..infinity))/2, 120); # Vaclav Kotesovec, Dec 11 2015
  • Mathematica
    Exp[NSum[((-1)^n*(-1 + Zeta[n]))/(n - 1), {n, 2, Infinity}, NSumTerms -> 300, WorkingPrecision -> 105] ] // RealDigits[#, 10, 103]& // First (* edited by Jean-François Alcover, May 23 2014 *)
  • PARI
    default(realprecision, 100); exp(suminf(n=2, (-1)^n*(zeta(n)-1)/(n-1))) \\ G. C. Greubel, Nov 15 2018
    
  • SageMath
    numerical_approx(exp(sum((-1)^k*(zeta(k)-1)/(k-1) for k in [2..1000])), digits=100) # G. C. Greubel, Nov 15 2018

Formula

Equals exp(A131688)/2.

Extensions

Data extended by Jean-François Alcover, May 23 2014

A270859 Decimal expansion of Sum_{n >= 1} |G_n|/n^2, where G_n are Gregory's coefficients.

Original entry on oeis.org

5, 2, 9, 0, 5, 2, 9, 6, 9, 9, 4, 0, 4, 3, 9, 0, 2, 4, 0, 7, 2, 2, 9, 3, 9, 3, 9, 4, 7, 5, 5, 8, 9, 7, 2, 8, 0, 9, 4, 0, 3, 8, 1, 7, 1, 6, 9, 5, 9, 6, 2, 5, 6, 9, 0, 8, 6, 1, 7, 1, 8, 2, 8, 0, 9, 7, 2, 7, 7, 7, 2, 2, 9, 6, 8, 5, 1, 1, 3, 4, 8, 0, 0, 6, 5, 2, 0, 7, 2, 8, 9, 1, 1, 3, 2, 5, 5, 9, 9, 6, 4, 0, 9, 2
Offset: 0

Views

Author

Keywords

Comments

Gregory's coefficients (A002206 and A002207) are also known as (reciprocal) logarithmic numbers, Bernoulli numbers of the second kind and Cauchy numbers of the first kind. First few coefficients are G_1=+1/2, G_2=-1/12, G_3=+1/24, G_4=-19/720, etc.

Examples

			0.5290529699404390240722939394755897280940381716959625...
		

References

  • Bernard Candelpergher, Ramanujan summation of divergent series, Berlin: Springer, 2017. See p. 105, eq. (3.23).

Crossrefs

Programs

  • Maple
    evalf(int((-Li(1-x)+gamma+ln(x))/x, x = 0..1), 150)
  • Mathematica
    N[Integrate[(-LogIntegral[1 - x] + EulerGamma + Log[x])/x, {x, 0, 1}], 150]

Formula

Equals Integral_{x=0..1} (-li(1-x) + gamma + log(x))/x dx, where li(x) is the logarithmic integral.
Equals A131688 + gamma_1 + gamma^2/2 - zeta(2)/2, where gamma_1 = A082633 and gamma = A001620 (Candelpergher, 2017; Blagouchine and Coppo, 2018). - Amiram Eldar, Mar 18 2024

A321943 Decimal expansion of Ni_1 = (1/2)*(gamma - log(2*Pi)) + 1, where gamma is Euler's constant (or the Euler-Mascheroni constant).

Original entry on oeis.org

3, 6, 9, 6, 6, 9, 2, 9, 9, 2, 4, 6, 0, 9, 3, 6, 8, 8, 5, 2, 2, 9, 2, 6, 3, 0, 8, 6, 3, 5, 5, 8, 3, 5, 7, 5, 6, 5, 9, 6, 8, 2, 1, 9, 4, 3, 3, 2, 1, 7, 8, 3, 8, 6, 5, 8, 5, 7, 3, 2, 0, 7, 6, 9, 5, 9, 6, 6, 8, 1, 6, 7, 4, 6, 1, 5, 7, 1, 9, 3, 7, 7, 7, 3, 7, 3, 0
Offset: 0

Views

Author

Stefano Spezia, Dec 12 2018

Keywords

Comments

This constant links Euler's constant and Pi to the values of the Riemann zeta function at positive integers (see formulas).

Examples

			0.369669299246093688522926308635583575659682194332178386585...
		

References

  • D. Suryanarayana, Sums of Riemann zeta function, Math. Student, 42 (1974), 141-143.

Crossrefs

Cf. A001620 (Euler's constant), A000796 (Pi).

Programs

  • Maple
    Digits := 100; evalf((1/2)*(gamma-ln(2*Pi))+1);
  • Mathematica
    First[RealDigits[N[(1/2)*(EulerGamma-Log[2*Pi])+1, 100], 10]]
  • PARI
    (1/2)*(Euler-log(2*Pi))+1
    
  • Python
    from mpmath import *
    mp.dps = 100; mp.pretty = True
    +(1/2)*(euler-log(2*pi))+1

Formula

Ni_1 = Sum_{k>=2} (-1)^k*zeta(k)/(k+1).
Ni_1 = Sum_{n>0} (Integral_{x=0..1} x^2*(1-x)_{n-1} dx)/(n*n!), where (z)_n = z*(z+1)*(z+2)*...*(z+n-1) is the Pochhammer symbol.
Ni_1 = Sum_{n>=0} A193546(n)/(A000290(n + 1)*A194506(n)).

A075887 a(n) = 1 + n + n[n/2] + n[n/2][n/3] +... + n[n/2][n/3]...[n/n], where [x]=ceiling(x).

Original entry on oeis.org

1, 2, 5, 16, 45, 171, 421, 1968, 4553, 19225, 57261, 226854, 496309, 3136420, 6764563, 24850336, 84877201, 380461599, 805949533, 4411165990, 9288196621, 48275465722, 154143694937, 527401107276, 1100708161081, 8151403215501
Offset: 0

Views

Author

Paul D. Hanna, Oct 17 2002

Keywords

Comments

a(n) ~ L^n where L = 3.517487255902369649399793699323864170685620..., with log(L) = Sum_{k=1..inf} log(k+1)/(k*(k+1)) = 1.2577468869443696300... (cf. A131688).

Examples

			a(5) = 171 = 1 +5[5/2] +5[5/2][5/3] +5[5/2][5/3][5/4] +5[5/2][5/3][5/4][5/5] = 1 + 5 + 5*3 + 5*3*2 + 5*3*2*2 + 5*3*2*2*1, here [x]=ceiling(x).
		

Crossrefs

Programs

  • Magma
    [1] cat [1 + (&+[(&*[Ceiling(n/k): k in [1..j]]): j in [1..n]]): n in [1..50]]; // G. C. Greubel, Oct 11 2018
  • Mathematica
    Table[1 +Sum[Product[Ceiling[n/k], {k,1,j}], {j,1,n}], {n,0,50}] (* G. C. Greubel, Oct 11 2018 *)
  • PARI
    {a(n) = 1 + sum(m=1,n,prod(k=1,m,ceil(n/k)))}
    for(n=0,40,print1(a(n),", "))
    

Formula

a(n) = 1 + Sum_{m=1..n} Product_{k=1..m} ceiling(n/k) for n>0 and a(0)=1.

A345385 Decimal expansion of Sum_{k>=2} zeta''(k).

Original entry on oeis.org

2, 3, 3, 6, 3, 1, 3, 1, 7, 6, 0, 5, 8, 9, 3, 3, 2, 9, 1, 9, 9, 6, 5, 1, 5, 4, 8, 1, 3, 7, 7, 7, 1, 2, 2, 4, 4, 7, 5, 5, 7, 6, 9, 7, 9, 4, 3, 3, 0, 2, 7, 0, 7, 9, 6, 7, 7, 6, 7, 8, 2, 7, 0, 8, 7, 8, 2, 9, 2, 8, 9, 1, 6, 3, 6, 9, 0, 1, 4, 0, 0, 2, 7, 2, 1, 3, 5, 9, 7, 4, 0, 7, 0, 6, 0, 8, 3, 1, 4, 7, 9, 3, 6, 2, 2
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 17 2021

Keywords

Examples

			2.3363131760589332919965154813777122447557697943302707967767827087829289...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(Zeta(2, k), k = 2..infinity), 120);
  • Mathematica
    RealDigits[Sum[Zeta''[k], {k, 2, 1000}], 10, 110][[1]]
  • PARI
    suminf(k=2, zeta''(k))

Formula

Equals Sum_{k>=1} log(k+1)^2 / (k*(k+1)).
Showing 1-10 of 17 results. Next