cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A131688 Decimal expansion of the constant Sum_{k>=1} log(k + 1) / (k * (k + 1)).

Original entry on oeis.org

1, 2, 5, 7, 7, 4, 6, 8, 8, 6, 9, 4, 4, 3, 6, 9, 6, 3, 0, 0, 0, 9, 8, 9, 9, 8, 3, 0, 4, 9, 5, 8, 8, 1, 5, 2, 8, 5, 1, 1, 5, 4, 0, 8, 9, 0, 5, 0, 8, 8, 8, 4, 8, 6, 8, 9, 7, 7, 5, 4, 0, 8, 3, 3, 5, 2, 2, 5, 4, 9, 9, 9, 4, 8, 9, 3, 7, 4, 4, 9, 3, 4, 9, 7, 0, 7, 9, 0, 4, 7, 3, 1, 5, 0, 1, 9, 0, 9, 7, 8, 2, 4, 5, 4, 8
Offset: 1

Views

Author

R. J. Mathar, Sep 14 2007

Keywords

Comments

Given A131385(n) = Product_{k=1..n} floor((n+k)/k), then limit A131385(n+1)/A131385(n) = exp(c), where c = this constant. - Paul D. Hanna, Nov 26 2012
Closely related to A085361 (the exponent in the definition of A085291). - Yuriy Sibirmovsky, Sep 04 2016

Examples

			1.257746886944369630009899830495881528511540890508884868977540833522...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, page 62. [Jean-François Alcover, Mar 21 2013]

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); L:=RiemannZeta(); (&+[(-1)^(n+1)*Evaluate(L,n+1)/n: n in [1..10^3]]); // G. C. Greubel, Nov 15 2018
    
  • Maple
    evalf(sum((-1)^(n+1)*Zeta(n+1)/n, n=1..infinity), 120); # Vaclav Kotesovec, Dec 11 2015
    evalf(Sum(-Zeta(1, k), k = 2..infinity), 120); # Vaclav Kotesovec, Jun 18 2021
  • Mathematica
    Sum[ -Zeta'[1 + k], {k, 1, Infinity}] (* Vladimir Reshetnikov, Dec 28 2008 *)
    Integrate[EulerGamma/x + PolyGamma[0, 1+x]/x, {x, 0, 1}] // N[#, 105]& // RealDigits[#][[1]]& (* or *) Integrate[x*Log[x]/((1-x)*Log[1-x]), {x, 0, 1}] // N[#, 105]& // RealDigits[#][[1]]& (* Jean-François Alcover, Feb 04 2013 *)
    $MaxExtraPrecision = 200; NIntegrate[HarmonicNumber[t]/t, {t, 0, 1}, WorkingPrecision -> 105] (* Yuriy Sibirmovsky, Sep 04 2016 *)
    digits = 120; RealDigits[NSum[(-1)^(n + 1)*Zeta[n + 1]/n, {n,1,Infinity}, NSumTerms -> 20*digits, WorkingPrecision -> 10*digits, Method -> "AlternatingSigns"], 10, digits][[1]] (* G. C. Greubel, Nov 15 2018 *)
  • PARI
    sumalt(s=1, (-1)^(s+1)/s*zeta(s+1) )
    
  • PARI
    suminf(k=2, -zeta'(k)) \\ Vaclav Kotesovec, Jun 17 2021
    
  • SageMath
    numerical_approx(sum((-1)^(k+1)*zeta(k+1)/k for k in [1..1000]), digits=100) # G. C. Greubel, Nov 15 2018

Formula

Equals Sum_{s>=1} (-1)^(s+1)*zeta(s+1)/s.
Equals Sum_{k>=1} -zeta'(1 + k), where Zeta' is the derivative of the Riemann zeta function. - Vladimir Reshetnikov, Dec 28 2008
Equals Sum_{s>=1} log(1+1/s)/s. - Jean-François Alcover, Mar 26 2013
Equals Integral_{t=0..1} H(t)/t dt. Compare to A001620 = Integral_{t=0..1} H(t) dt. Where H(t) are generalized harmonic numbers. - Yuriy Sibirmovsky, Sep 04 2016
Equals lim_{n->oo} log(d(n!))*log(n)/n, where d(n) is the number of divisors of n (A000005) (Erdős et al., 1996). - Amiram Eldar, Nov 07 2020

Extensions

Extended to 105 digits by Jean-François Alcover, Feb 04 2013

A345683 a(n) = n! * Sum_{k=1..n} 1/floor(n/k).

Original entry on oeis.org

1, 3, 14, 66, 444, 2880, 25080, 216720, 2247840, 24071040, 304335360, 3752179200, 54965433600, 810550540800, 13176376012800, 219079045785600, 4078723532083200, 75227891042304000, 1550619342784512000, 31871016307113984000, 710529031487987712000, 16180987966182014976000
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[1/Floor[n/k], {k, 1, n}], {n, 1, 25}]
    Table[n!*(Sum[(Floor[n/j] - Floor[n/(j + 1)])/j, {j, 1, n}]), {n, 1, 25}]
  • PARI
    a(n) = n!*sum(k=1, n, 1/(n\k)); \\ Michel Marcus, Jun 24 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, (1-x^k)*log(1-x^k))/(1-x))) \\ Seiichi Manyama, Jul 23 2022
    
  • Python
    from math import factorial, isqrt
    def A345683(n): return (m:=factorial(n))*(n-1)+m//n+sum((q:=n//k)*(m//k-m//(k-1))+m//q for k in range(2,isqrt(n)+1)) # Chai Wah Wu, Oct 27 2023

Formula

a(n) ~ c * n * n!, where c = Sum_{j>=1} 1/(j^2*(j+1)) = Pi^2/6 - 1 = 0.644934... [proved by Harry Richman, see Mathoverflow link]
E.g.f.: -(1/(1-x)) * Sum_{k>0} (1 - x^k) * log(1 - x^k). - Seiichi Manyama, Jul 23 2022

A345684 a(n) = n! * Sum_{k=1..n} k/floor(n/k).

Original entry on oeis.org

1, 5, 32, 198, 1584, 12480, 122520, 1214640, 14011200, 166924800, 2274894720, 31135104000, 485667705600, 7710089587200, 133974352512000, 2386854434764800, 46621903994265600, 918384939343872000, 19760215067873280000, 430137075045629952000, 10042411264251125760000
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!*Sum[k/Floor[n/k], {k, 1, n}], {n, 1, 25}]
    Table[n!*Sum[(Floor[n/j] - Floor[n/(1 + j)])*((1 + Floor[n/j] + Floor[n/(1 + j)])/2/j), {j, 1, n}], {n, 1, 25}]
  • PARI
    a(n) = n!*sum(k=1, n, k/(n\k)); \\ Michel Marcus, Jun 23 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, k*(1-x^k)*log(1-x^k))/(1-x))) \\ Seiichi Manyama, Jul 23 2022

Formula

a(n) ~ c * n^2 * n!, where c = Sum_{j>=1} (2*j + 1) / (2*j^3*(j+1)^2) = Pi^2/12 + zeta(3)/2 - 1 = 0.423495...
E.g.f.: -(1/(1-x)) * Sum_{k>0} k * (1 - x^k) * log(1 - x^k). - Seiichi Manyama, Jul 23 2022

A024917 a(n) = Sum_{k=2..n} k*floor(n/k).

Original entry on oeis.org

2, 5, 11, 16, 27, 34, 48, 60, 77, 88, 115, 128, 151, 174, 204, 221, 259, 278, 319, 350, 385, 408, 467, 497, 538, 577, 632, 661, 732, 763, 825, 872, 925, 972, 1062, 1099, 1158, 1213, 1302, 1343, 1438, 1481, 1564, 1641, 1712, 1759, 1882, 1938, 2030, 2101, 2198, 2251
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [&+[k*Floor(n/k): k in [2..n]]: n in [2..55]]; // Bruno Berselli, Jan 08 2012
    
  • Mathematica
    Table[Sum[k*Floor[n/k],{k,2,n}],{n,2,60}] (* Harvey P. Dale, Mar 13 2015 *)
  • PARI
    a(n) = sum(k=2,n, k*floor(n/k)); \\ Michel Marcus, Sep 02 2019
    
  • Python
    from math import isqrt
    def A024917(n): return (-(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1)-n # Chai Wah Wu, Oct 23 2023

Formula

G.f.: (1/(1 - x)) * Sum_{k>=2} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 02 2019

A356011 a(n) = n! * Sum_{k=1..n} 1/(k! * floor(n/k)).

Original entry on oeis.org

1, 2, 6, 17, 80, 337, 2240, 14681, 117010, 1023941, 10900472, 108881665, 1375544846, 17732140805, 247041590476, 3605768497217, 59990390084690, 977383707751621, 18214603019184800, 337615168055209601, 6763842079452393622, 141262515443311046885
Offset: 1

Views

Author

Seiichi Manyama, Jul 23 2022

Keywords

Crossrefs

Row sums of A356013.

Programs

  • Mathematica
    Table[n! * Sum[1/(k!*Floor[n/k]), {k,1,n}], {n,1,25}] (* Vaclav Kotesovec, Aug 11 2025 *)
  • PARI
    a(n) = n!*sum(k=1, n, 1/(k!*(n\k)));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, (1-x^k)*log(1-x^k)/k!)/(1-x)))

Formula

E.g.f.: -(1/(1-x)) * Sum_{k>0} (1 - x^k) * log(1 - x^k)/k!.
a(n) ~ exp(1) * (n-1)!. - Vaclav Kotesovec, Aug 11 2025
Showing 1-5 of 5 results.