cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A345682 a(n) = n! * Sum_{k=1..n} 1/(k*floor(n/k)).

Original entry on oeis.org

1, 2, 7, 26, 148, 804, 6228, 47424, 441936, 4288320, 50437440, 560373120, 7723935360, 106618256640, 1614841401600, 25127582054400, 446784010444800, 7727747269939200, 152873884406476800, 2966599550251008000, 62987912790921216000, 1378192085174919168000
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[1/(k*Floor[n/k]), {k, 1, n}], {n, 1, 25}]
    Table[n! * Sum[(HarmonicNumber[Floor[n/j]] - HarmonicNumber[Floor[n/(1 + j)]])/j, {j, 1, n}], {n, 1, 25}]
  • PARI
    a(n) = n!*sum(k=1, n, 1/(k*(n\k))); \\ Michel Marcus, Jun 24 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, (1-x^k)*log(1-x^k)/k)/(1-x))) \\ Seiichi Manyama, Jul 23 2022

Formula

a(n) ~ c * n!, where c = Sum_{j>=1} log(1 + 1/j)/j = A131688 = 1.25774...
E.g.f.: -(1/(1-x)) * Sum_{k>0} (1 - x^k) * log(1 - x^k)/k. - Seiichi Manyama, Jul 23 2022

A224526 Number of idempotent 4 X 4 0..n matrices of rank 1.

Original entry on oeis.org

108, 404, 892, 1716, 2732, 4324, 6060, 8516, 11308, 14820, 18572, 23668, 28716, 34916, 41836, 49860, 58076, 68164, 78252, 90356, 102988, 116868, 131276, 148564, 165660, 184532, 204604, 226788, 249116, 274900, 300252, 328628, 357868, 389028, 421580, 457924, 493500
Offset: 1

Views

Author

R. H. Hardin, Apr 09 2013

Keywords

Comments

Row 4 of A224524

Examples

			Some solutions for n=3:
  0 0 0 0     0 0 0 0     1 0 0 0     0 0 0 0     0 0 0 0
  0 0 0 0     2 0 0 1     0 0 0 0     1 1 0 0     0 0 0 0
  2 0 1 0     2 0 0 1     0 0 0 0     3 3 0 0     0 0 0 0
  0 0 0 0     2 0 0 1     0 0 0 0     2 2 0 0     1 0 1 1
		

Crossrefs

Programs

  • Maple
    F4 := k -> 8*k^3 + 36*k^2 + 24*add(m*floor(k/m), m = 2 .. k) + 12*add(floor(k/m), m = 2 .. k) + 12*add(floor(k/m)^2, m = 2 .. k) + 60*k + 4:
    map(F4, [$1..100]); # Robert Israel, Dec 15 2019
  • Mathematica
    Table[8*n^3+36*n^2+60*n+4+24*Sum[k*Floor[n/k],{k, 2, n}]+12*Sum[Floor[(n-k)/k],{k, n-1}]+12*Sum[Floor[(n/k)]^2,{k,2,n}],{n,1,100}] (* Metin Sariyar, Dec 15 2019 *)

Formula

a(n) = 8*n^3 + 36*n^2 + 60*n + 4 + 24*A024917(n) + 12*A002541(n) + 12*Sum_{m=2..n} floor(n/m)^2. - Robert Israel, Dec 15 2019

Extensions

More terms from Metin Sariyar, Dec 15 2019

A303900 Numbers k such that the average of all strong divisors of all positive integers <= k is an integer.

Original entry on oeis.org

2, 8, 12, 16, 67, 924122, 1067239
Offset: 1

Views

Author

Ilya Gutkovskiy, May 02 2018

Keywords

Comments

We say d is a strong divisor of k iff d is a divisor of k and d > 1.
Numbers k such that A002541(k) | A024917(k).
a(8) > 10^12. - Giovanni Resta, May 05 2018

Crossrefs

Extensions

a(3)-a(7) corrected by Daniel Suteu, May 03 2018
Showing 1-3 of 3 results.