cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A010786 Floor-factorial numbers: a(n) = Product_{k=1..n} floor(n/k).

Original entry on oeis.org

1, 1, 2, 3, 8, 10, 36, 42, 128, 216, 600, 660, 3456, 3744, 9408, 18900, 61440, 65280, 279936, 295488, 1152000, 2116800, 4878720, 5100480, 31850496, 41472000, 93450240, 163762560, 568995840, 589317120, 3265920000, 3374784000, 11324620800, 19269550080, 42188636160
Offset: 0

Views

Author

Keywords

Comments

Product floor(n/1)*floor(n/2)*floor(n/3)*...*floor(n/n).
a(n) is the number of functions f:[n]->[n] where f(x) is a multiple of x for all x in [n]. We note that there are floor[n/x] possible choices for each image of x under f. [Dennis P. Walsh, Nov 06 2014]

Examples

			For n=4 the a(4)=8 functions are given by the image sequences <1,2,3,4>, <1,4,3,4>, <2,2,3,4>, <2,4,3,4>, <3,2,3,4>, <3,4,3,4>, <4,2,3,4>, and <4,4,3,4>. [_Dennis P. Walsh_, Nov 06 2014]
		

Crossrefs

Programs

  • Haskell
    a010786 n = product $ map (div n) [1..n]
    -- Reinhard Zumkeller, Feb 26 2012
    
  • Magma
    [&*[n div i: i in [1..n]]: n in [1..35]]; // Vincenzo Librandi, Oct 03 2018
  • Maple
    a := n -> mul( floor(n/k), k=1..n);
  • Mathematica
    Table[Product[Floor[n/k],{k,n}],{n,40}] (* Harvey P. Dale, May 09 2017 *)
  • PARI
    vector(50, n, prod(k=1, n, n\k)) \\ Michel Marcus, Nov 10 2014
    

Formula

a(n+1) = a(n)*A208449(n)/A208450(n). - Reinhard Zumkeller, Feb 26 2012
GCD(a(n), a(n+1)) = A208448(n). - Reinhard Zumkeller, Feb 26 2012
From Vaclav Kotesovec, Oct 03 2018: (Start)
log(a(n)) ~ c * (n - log(2*Pi*n)/2), where c = 0.7885...
Conjecture: c = A085361. (End)
From Ridouane Oudra, Jan 18 2025: (Start)
a(n) = Product_{k=1..n} ((k+1)/k)^floor(n/(k+1)).
a(n) = Product_{k=1..n} k^A075993(n, k).
a(n) = A092143(n)/f(n), where f(n) = Product_{k=1..n} ((floor(n/k)-1)!).
a(n) = A092143(n)/g(n), where g(n) = Product_{k=1..n} A377484(k).
a(n)/a(n-1) = A007955(n)/A377484(n). (End)

Extensions

More terms from Hieronymus Fischer, Jul 08 2007
Edited by N. J. A. Sloane, Jul 05 2008 at the suggestion of Rick L. Shepherd
a(0)=1 prepended by Alois P. Heinz, Oct 30 2023

A131451 Product of the nonzero digital products of all the numbers 1 to n (a 'total digital-product factorial' in base 10).

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 362880, 362880, 725760, 2177280, 8709120, 43545600, 261273600, 1828915200, 14631321600, 131681894400, 263363788800, 526727577600, 2106910310400, 12641461862400, 101131694899200
Offset: 1

Views

Author

Hieronymus Fischer, Jul 11 2007

Keywords

Examples

			a(12)=dp_10(1)*dp_10(2)*dp_10(3)*...*dp_10(11)*dp_10(12)=1*2*3*4*5*6* 7*8*9*1*(1*1)*(1*2).
a(345)=3*4*5*3^45*4^5*(3-1)!^100*(4-1)!^10*(5-1)!^1*9!^64.
a(1000)=9!^300. a(1111)=9!^321.
		

Crossrefs

Programs

  • Maple
    with transforms;
    f:=proc(n) option remember; if n = 0 then 1 else f(n-1)*digprod0(n); fi; end;[seq(f(n),n=0..40)]; # N. J. A. Sloane, Oct 12 2013

Formula

The following formulas are given for general bases p>1:
a(n)=product{1<=k<=n, dp_p(k)} where dp_p(k) = product of the nonzero digits of k in base p.
a(n)=(n mod p)!*product{00}(floor(n/p^j)mod p)^(1+(n mod p^j))*((floor(n/p^j)mod p)-1)!^(p^j).
Recurrence: a(n+k*p^m)=a(n)*k^n*a(k*p^m) for 0<=k
a(n)=n!, for 0<=n
a(k*p^m)=k*(p-1)!^(k*m*p^(m-1))*(k-1)!^(p^m) for 0<=k
a(n)=(p-1)!^((m*p^(m+1)-(m+1)*p^m+1)/(p-1)^2)=(p-1)!^(1+2*p+3*p^2+...+m*p^(m-1)) for n=1+p+p^2+...+p^m.
a(n)=(p-1)!^(k*(m*p^(m+1)-(m+1)*p^m+1)/(p-1)^2)*(k-1)!^(p*(p^m-1)/(p-1))*k^(k*(p^(m+1)-(m+1)*p+m)/(p-1)^2)*k!*k^m, for n=k*(1+p+p^2+...+p^m).
For p=10: a(10^n)=9!^(n*10^(n-1)).
Asymptotic behavior: a(10^n)=10^(0.5559763...*n*10^n). Hence it grows slower than the factorial A000142(10^n) for which we have (10^n)!=10^((n-0.43429448...)*10^n+n/2+0.3990899...+o(1/n)). Example: a(1000) has 1668 digits, whereas 1000! has 2568 digits.

Extensions

New b-file from Hieronymus Fischer, Sep 10 2007
2 typos in the formula section removed by Hieronymus Fischer, Dec 05 2011

A131688 Decimal expansion of the constant Sum_{k>=1} log(k + 1) / (k * (k + 1)).

Original entry on oeis.org

1, 2, 5, 7, 7, 4, 6, 8, 8, 6, 9, 4, 4, 3, 6, 9, 6, 3, 0, 0, 0, 9, 8, 9, 9, 8, 3, 0, 4, 9, 5, 8, 8, 1, 5, 2, 8, 5, 1, 1, 5, 4, 0, 8, 9, 0, 5, 0, 8, 8, 8, 4, 8, 6, 8, 9, 7, 7, 5, 4, 0, 8, 3, 3, 5, 2, 2, 5, 4, 9, 9, 9, 4, 8, 9, 3, 7, 4, 4, 9, 3, 4, 9, 7, 0, 7, 9, 0, 4, 7, 3, 1, 5, 0, 1, 9, 0, 9, 7, 8, 2, 4, 5, 4, 8
Offset: 1

Author

R. J. Mathar, Sep 14 2007

Keywords

Comments

Given A131385(n) = Product_{k=1..n} floor((n+k)/k), then limit A131385(n+1)/A131385(n) = exp(c), where c = this constant. - Paul D. Hanna, Nov 26 2012
Closely related to A085361 (the exponent in the definition of A085291). - Yuriy Sibirmovsky, Sep 04 2016

Examples

			1.257746886944369630009899830495881528511540890508884868977540833522...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, page 62. [Jean-François Alcover, Mar 21 2013]

Programs

  • Magma
    SetDefaultRealField(RealField(100)); L:=RiemannZeta(); (&+[(-1)^(n+1)*Evaluate(L,n+1)/n: n in [1..10^3]]); // G. C. Greubel, Nov 15 2018
    
  • Maple
    evalf(sum((-1)^(n+1)*Zeta(n+1)/n, n=1..infinity), 120); # Vaclav Kotesovec, Dec 11 2015
    evalf(Sum(-Zeta(1, k), k = 2..infinity), 120); # Vaclav Kotesovec, Jun 18 2021
  • Mathematica
    Sum[ -Zeta'[1 + k], {k, 1, Infinity}] (* Vladimir Reshetnikov, Dec 28 2008 *)
    Integrate[EulerGamma/x + PolyGamma[0, 1+x]/x, {x, 0, 1}] // N[#, 105]& // RealDigits[#][[1]]& (* or *) Integrate[x*Log[x]/((1-x)*Log[1-x]), {x, 0, 1}] // N[#, 105]& // RealDigits[#][[1]]& (* Jean-François Alcover, Feb 04 2013 *)
    $MaxExtraPrecision = 200; NIntegrate[HarmonicNumber[t]/t, {t, 0, 1}, WorkingPrecision -> 105] (* Yuriy Sibirmovsky, Sep 04 2016 *)
    digits = 120; RealDigits[NSum[(-1)^(n + 1)*Zeta[n + 1]/n, {n,1,Infinity}, NSumTerms -> 20*digits, WorkingPrecision -> 10*digits, Method -> "AlternatingSigns"], 10, digits][[1]] (* G. C. Greubel, Nov 15 2018 *)
  • PARI
    sumalt(s=1, (-1)^(s+1)/s*zeta(s+1) )
    
  • PARI
    suminf(k=2, -zeta'(k)) \\ Vaclav Kotesovec, Jun 17 2021
    
  • SageMath
    numerical_approx(sum((-1)^(k+1)*zeta(k+1)/k for k in [1..1000]), digits=100) # G. C. Greubel, Nov 15 2018

Formula

Equals Sum_{s>=1} (-1)^(s+1)*zeta(s+1)/s.
Equals Sum_{k>=1} -zeta'(1 + k), where Zeta' is the derivative of the Riemann zeta function. - Vladimir Reshetnikov, Dec 28 2008
Equals Sum_{s>=1} log(1+1/s)/s. - Jean-François Alcover, Mar 26 2013
Equals Integral_{t=0..1} H(t)/t dt. Compare to A001620 = Integral_{t=0..1} H(t) dt. Where H(t) are generalized harmonic numbers. - Yuriy Sibirmovsky, Sep 04 2016
Equals lim_{n->oo} log(d(n!))*log(n)/n, where d(n) is the number of divisors of n (A000005) (Erdős et al., 1996). - Amiram Eldar, Nov 07 2020

Extensions

Extended to 105 digits by Jean-François Alcover, Feb 04 2013

A131387 Product of the nonzero digital products of n for all the bases 1 to n (a 'total digital-product factorial').

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 12, 48, 48, 192, 2880, 2880, 25920, 552960, 3265920, 1935360, 116121600, 278691840, 9405849600, 26754416640, 94058496000, 3210529996800, 869100503040000, 423789959577600, 927040536576000, 135612787064832000
Offset: 1

Author

Hieronymus Fischer, Jul 08 2007

Keywords

Programs

  • PARI
    a(n) = {p = 1; for (b=2, n, digs = digits(n, b); p *= prod(k=1, #digs, if (digs[k], digs[k], 1));); return (p);} \\ Michel Marcus, Jul 15 2013

Formula

a(n)=product{1<=p<=n, dp_p(n)} where dp_p(n) = product of the nonzero digits of n in base p.

A075887 a(n) = 1 + n + n[n/2] + n[n/2][n/3] +... + n[n/2][n/3]...[n/n], where [x]=ceiling(x).

Original entry on oeis.org

1, 2, 5, 16, 45, 171, 421, 1968, 4553, 19225, 57261, 226854, 496309, 3136420, 6764563, 24850336, 84877201, 380461599, 805949533, 4411165990, 9288196621, 48275465722, 154143694937, 527401107276, 1100708161081, 8151403215501
Offset: 0

Author

Paul D. Hanna, Oct 17 2002

Keywords

Comments

a(n) ~ L^n where L = 3.517487255902369649399793699323864170685620..., with log(L) = Sum_{k=1..inf} log(k+1)/(k*(k+1)) = 1.2577468869443696300... (cf. A131688).

Examples

			a(5) = 171 = 1 +5[5/2] +5[5/2][5/3] +5[5/2][5/3][5/4] +5[5/2][5/3][5/4][5/5] = 1 + 5 + 5*3 + 5*3*2 + 5*3*2*2 + 5*3*2*2*1, here [x]=ceiling(x).
		

Crossrefs

Programs

  • Magma
    [1] cat [1 + (&+[(&*[Ceiling(n/k): k in [1..j]]): j in [1..n]]): n in [1..50]]; // G. C. Greubel, Oct 11 2018
  • Mathematica
    Table[1 +Sum[Product[Ceiling[n/k], {k,1,j}], {j,1,n}], {n,0,50}] (* G. C. Greubel, Oct 11 2018 *)
  • PARI
    {a(n) = 1 + sum(m=1,n,prod(k=1,m,ceil(n/k)))}
    for(n=0,40,print1(a(n),", "))
    

Formula

a(n) = 1 + Sum_{m=1..n} Product_{k=1..m} ceiling(n/k) for n>0 and a(0)=1.

A308820 a(n) = Product_{k=1..n} ceiling(n/k)!.

Original entry on oeis.org

1, 2, 12, 96, 2880, 34560, 5806080, 92897280, 25082265600, 2006581248000, 794606174208000, 19070548180992000, 208250386136432640000, 5831010811820113920000, 4198327784510482022400000, 3224315738504050193203200000, 14799609239733590386802688000000
Offset: 1

Author

Ilya Gutkovskiy, Jun 26 2019

Keywords

Crossrefs

Programs

  • Magma
    [(&*[Factorial(Ceiling(n/(n-j+1))): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Mar 08 2023
    
  • Maple
    seq(mul(ceil(n/k)!, k=1..n), n=1..30); # Ridouane Oudra, Apr 10 2023
  • Mathematica
    a[n_] := Product[Ceiling[n/k]!, {k, 1, n}]; Table[a[n], {n, 1, 17}]
  • PARI
    a(n) = prod(k=1, n, ceil(n/k)!); \\ Michel Marcus, Jun 27 2019
    
  • SageMath
    def A308820(n): return product( factorial(ceil(n/(n-k+1))) for k in range(1,n+1))
    [A308820(n) for n in range(1,21)] # G. C. Greubel, Mar 08 2023

Formula

a(n) = Product_{k=1..n-1} Product_{d|k} (d + 1).
a(n) = Product_{k=1..n-1} (k + 1)^floor((n-1)/k). - Ridouane Oudra, Apr 10 2023
a(n) = A131385(n)*A092143(n-1). - Ridouane Oudra, Sep 20 2024

A332233 Number of integer partitions lambda (of any k) satisfying n = max_{p:lambda} p*m(p,lambda), where m(p,lambda) is the multiplicity of part p in lambda.

Original entry on oeis.org

1, 1, 4, 10, 44, 84, 528, 864, 4944, 12720, 56832, 89856, 882432, 1209600, 6036480, 20017152, 98592768, 141834240, 1202135040, 1625702400, 12997877760, 35291013120, 124429271040, 191102976000, 2350327726080, 4064999178240, 15972386734080, 47163577466880
Offset: 0

Author

Alois P. Heinz, Feb 07 2020

Keywords

Comments

a(0) = 1 by convention.

Examples

			a(2) = 4: 2, 11, 21, 211.
a(3) = 10: 3, 31, 32, 111, 311, 321, 2111, 3111, 3211, 32111.
a(4) = 44: 4, 22, 41, 42, 43, 221, 322, 411, 421, 422, 431, 432, 1111, 2211, 3221, 4111, 4211, 4221, 4311, 4321, 4322, 21111, 22111, 31111, 32211, 41111, 42111, 42211, 43111, 43211, 43221, 221111, 321111, 322111, 421111, 422111, 431111, 432111, 432211, 3221111, 4221111, 4321111, 4322111, 43221111.
		

Crossrefs

Column sums of A134979.
Cf. A024916.
Cf. A131385 (partial sum).

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, m,
          `if`(i<1 or m=0 and n
    				
  • Mathematica
    $RecursionLimit = 2000;
    b[n_, i_, m_, t_] := b[n, i, m, t] = If[n==0, m, If[i<1 || m==0 && nJean-François Alcover, May 08 2020, after Maple *)

Formula

a(n) = Sum_{k=n..A024916(n)} A134979(k,n) for n > 0.
a(n) = A131385(n+1) - A131385(n), for n>0. - Ridouane Oudra, Oct 30 2023

A127482 Product of the nonzero digital products of all the prime numbers prime(1) to prime(n).

Original entry on oeis.org

2, 6, 30, 210, 210, 630, 4410, 39690, 238140, 4286520, 12859560, 270050760, 1080203040, 12962436480, 362948221440, 5444223321600, 244990049472000, 1469940296832000, 61737492466944000, 432162447268608000, 9075411392640768000, 571750917736368384000
Offset: 1

Author

Alain Van Kerckhoven (alain(AT)avk.org), Sep 12 2007

Keywords

Examples

			a(7) = dp_10(2)*dp_10(3)*dp_10(5)*dp_10(7)*dp_10(11)*dp_10(13)*dp_10(17) = 2*3*5*7*(1*1)*(1*3)*(1*7) = 4410.
		

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 1, a(n-1)*mul(
         `if`(i=0, 1, i), i=convert(ithprime(n), base, 10)))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Mar 11 2022
  • Mathematica
    Rest[FoldList[Times,1,Times@@Cases[IntegerDigits[#],Except[0]]&/@ Prime[ Range[ 20]]]] (* Harvey P. Dale, Mar 19 2013 *)
  • PARI
    f(n) = vecprod(select(x->(x>1), digits(prime(n)))); \\ A101987
    a(n) = prod(k=1, n, f(k)); \\ Michel Marcus, Mar 11 2022
    
  • Python
    from math import prod
    from sympy import sieve
    def pod(s): return prod(int(d) for d in s if d != '0')
    def a(n): return pod("".join(str(sieve[i+1]) for i in range(n)))
    print([a(n) for n in range(1, 23)]) # Michael S. Branicky, Mar 11 2022

Formula

a(n) = Product_{k=1..n} dp_p(prime(k)) where prime(k)=A000040(k) and dp_p(m)=product of the nonzero digits of m in base p (p=10 for this sequence). - Hieronymus Fischer, Sep 29 2007
From Michel Marcus, Mar 11 2022: (Start)
a(n) = Product_{k=1..n} A051801(prime(k)).
a(n) = Product_{k=1..n} A101987(k). (End)

Extensions

Corrected and extended by Hieronymus Fischer, Sep 29 2007

A145119 a(n) = Product_{k=1..n-1} (ceiling(n/k) - ceiling(n/k) mod 2).

Original entry on oeis.org

1, 2, 4, 16, 32, 96, 384, 1024, 2048, 10240, 30720, 73728, 294912, 688128, 1835008, 12582912, 25165824, 56623104, 283115520, 629145600, 1887436800, 11072962560, 26575110144, 57982058496, 231928233984, 753766760448, 1758789107712
Offset: 1

Author

Reikku Kulon, Oct 02 2008

Keywords

Comments

Bounded by A010786 and A131385.
Each term has many more factors of two than any other prime factor.

Crossrefs

Programs

  • PARI
    a(n) = prod(k=1, n-1, ceil(n/k) - ceil(n/k) % 2); \\ Michel Marcus, Nov 17 2019
Showing 1-9 of 9 results.