cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A010786 Floor-factorial numbers: a(n) = Product_{k=1..n} floor(n/k).

Original entry on oeis.org

1, 1, 2, 3, 8, 10, 36, 42, 128, 216, 600, 660, 3456, 3744, 9408, 18900, 61440, 65280, 279936, 295488, 1152000, 2116800, 4878720, 5100480, 31850496, 41472000, 93450240, 163762560, 568995840, 589317120, 3265920000, 3374784000, 11324620800, 19269550080, 42188636160
Offset: 0

Views

Author

Keywords

Comments

Product floor(n/1)*floor(n/2)*floor(n/3)*...*floor(n/n).
a(n) is the number of functions f:[n]->[n] where f(x) is a multiple of x for all x in [n]. We note that there are floor[n/x] possible choices for each image of x under f. [Dennis P. Walsh, Nov 06 2014]

Examples

			For n=4 the a(4)=8 functions are given by the image sequences <1,2,3,4>, <1,4,3,4>, <2,2,3,4>, <2,4,3,4>, <3,2,3,4>, <3,4,3,4>, <4,2,3,4>, and <4,4,3,4>. [_Dennis P. Walsh_, Nov 06 2014]
		

Crossrefs

Programs

  • Haskell
    a010786 n = product $ map (div n) [1..n]
    -- Reinhard Zumkeller, Feb 26 2012
    
  • Magma
    [&*[n div i: i in [1..n]]: n in [1..35]]; // Vincenzo Librandi, Oct 03 2018
  • Maple
    a := n -> mul( floor(n/k), k=1..n);
  • Mathematica
    Table[Product[Floor[n/k],{k,n}],{n,40}] (* Harvey P. Dale, May 09 2017 *)
  • PARI
    vector(50, n, prod(k=1, n, n\k)) \\ Michel Marcus, Nov 10 2014
    

Formula

a(n+1) = a(n)*A208449(n)/A208450(n). - Reinhard Zumkeller, Feb 26 2012
GCD(a(n), a(n+1)) = A208448(n). - Reinhard Zumkeller, Feb 26 2012
From Vaclav Kotesovec, Oct 03 2018: (Start)
log(a(n)) ~ c * (n - log(2*Pi*n)/2), where c = 0.7885...
Conjecture: c = A085361. (End)
From Ridouane Oudra, Jan 18 2025: (Start)
a(n) = Product_{k=1..n} ((k+1)/k)^floor(n/(k+1)).
a(n) = Product_{k=1..n} k^A075993(n, k).
a(n) = A092143(n)/f(n), where f(n) = Product_{k=1..n} ((floor(n/k)-1)!).
a(n) = A092143(n)/g(n), where g(n) = Product_{k=1..n} A377484(k).
a(n)/a(n-1) = A007955(n)/A377484(n). (End)

Extensions

More terms from Hieronymus Fischer, Jul 08 2007
Edited by N. J. A. Sloane, Jul 05 2008 at the suggestion of Rick L. Shepherd
a(0)=1 prepended by Alois P. Heinz, Oct 30 2023

A131451 Product of the nonzero digital products of all the numbers 1 to n (a 'total digital-product factorial' in base 10).

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 362880, 362880, 725760, 2177280, 8709120, 43545600, 261273600, 1828915200, 14631321600, 131681894400, 263363788800, 526727577600, 2106910310400, 12641461862400, 101131694899200
Offset: 1

Views

Author

Hieronymus Fischer, Jul 11 2007

Keywords

Examples

			a(12)=dp_10(1)*dp_10(2)*dp_10(3)*...*dp_10(11)*dp_10(12)=1*2*3*4*5*6* 7*8*9*1*(1*1)*(1*2).
a(345)=3*4*5*3^45*4^5*(3-1)!^100*(4-1)!^10*(5-1)!^1*9!^64.
a(1000)=9!^300. a(1111)=9!^321.
		

Crossrefs

Programs

  • Maple
    with transforms;
    f:=proc(n) option remember; if n = 0 then 1 else f(n-1)*digprod0(n); fi; end;[seq(f(n),n=0..40)]; # N. J. A. Sloane, Oct 12 2013

Formula

The following formulas are given for general bases p>1:
a(n)=product{1<=k<=n, dp_p(k)} where dp_p(k) = product of the nonzero digits of k in base p.
a(n)=(n mod p)!*product{00}(floor(n/p^j)mod p)^(1+(n mod p^j))*((floor(n/p^j)mod p)-1)!^(p^j).
Recurrence: a(n+k*p^m)=a(n)*k^n*a(k*p^m) for 0<=k
a(n)=n!, for 0<=n
a(k*p^m)=k*(p-1)!^(k*m*p^(m-1))*(k-1)!^(p^m) for 0<=k
a(n)=(p-1)!^((m*p^(m+1)-(m+1)*p^m+1)/(p-1)^2)=(p-1)!^(1+2*p+3*p^2+...+m*p^(m-1)) for n=1+p+p^2+...+p^m.
a(n)=(p-1)!^(k*(m*p^(m+1)-(m+1)*p^m+1)/(p-1)^2)*(k-1)!^(p*(p^m-1)/(p-1))*k^(k*(p^(m+1)-(m+1)*p+m)/(p-1)^2)*k!*k^m, for n=k*(1+p+p^2+...+p^m).
For p=10: a(10^n)=9!^(n*10^(n-1)).
Asymptotic behavior: a(10^n)=10^(0.5559763...*n*10^n). Hence it grows slower than the factorial A000142(10^n) for which we have (10^n)!=10^((n-0.43429448...)*10^n+n/2+0.3990899...+o(1/n)). Example: a(1000) has 1668 digits, whereas 1000! has 2568 digits.

Extensions

New b-file from Hieronymus Fischer, Sep 10 2007
2 typos in the formula section removed by Hieronymus Fischer, Dec 05 2011

A131385 Product ceiling(n/1)*ceiling(n/2)*ceiling(n/3)*...*ceiling(n/n) (the 'ceiling factorial').

Original entry on oeis.org

1, 1, 2, 6, 16, 60, 144, 672, 1536, 6480, 19200, 76032, 165888, 1048320, 2257920, 8294400, 28311552, 126904320, 268738560, 1470873600, 3096576000, 16094453760, 51385466880, 175814737920, 366917713920, 2717245440000, 6782244618240, 22754631352320, 69918208819200
Offset: 0

Author

Hieronymus Fischer, Jul 08 2007

Keywords

Comments

From R. J. Mathar, Dec 05 2012: (Start)
a(n) = b(n-1) because a(n) = Product_{k=1..n} ceiling(n/k) = Product_{k=1..n-1} ceiling(n/k) = n*Product_{k=2..n-1} ceiling(n/k) = Product_{k=1..1} (1+(n-1)/k)*Product_{k=2..n-1} ceiling(n/k).
The cases of the product are (i) k divides n but does not divide n-1, ceiling(n/k) = n/k = 1 + floor((n-1)/k), (ii) k does not divide n but divides n-1, ceiling(n/k) = 1 + (n-1)/k = 1 + floor((n-1)/k) and (iii) k divides neither n nor n-1, ceiling(n/k) = 1 + floor((n-1)/k).
In all cases, including k=1, a(n) = Product_{k=1..n-1} (1+floor((n-1)/k)) = Product_{k=1..n-1} floor(1+(n-1)/k) = b(n-1).
(End)
a(n) is the number of functions f:D->{1,2,..,n-1} where D is any subset of {1,2,..,n-1} and where f(x) == 0 (mod x) for every x in D. - Dennis P. Walsh, Nov 13 2015

Examples

			From _Paul D. Hanna_, Nov 26 2012: (Start)
Illustrate initial terms using formula involving the floor function []:
  a(1) = 1;
  a(2) = [2/1] = 2;
  a(3) = [3/1]*[4/2] = 6;
  a(4) = [4/1]*[5/2]*[6/3] = 16;
  a(5) = [5/1]*[5/2]*[7/3]*[8/4] = 60;
  a(6) = [6/1]*[7/2]*[8/3]*[9/4]*[10/5] = 144.
Illustrate another alternative generating method:
  a(1) = 1;
  a(2) = (2/1)^[1/1] = 2;
  a(3) = (2/1)^[2/1] * (3/2)^[2/2] = 6;
  a(4) = (2/1)^[3/1] * (3/2)^[3/2] * (4/3)^[3/3] = 16;
  a(5) = (2/1)^[4/1] * (3/2)^[4/2] * (4/3)^[4/3] * (5/4)^[4/4] = 60.
(End)
For n=3 the a(3)=6 functions f from subsets of {1,2} into {1,2} with f(x) == 0 (mod x) are the following: f=empty set (since null function vacuously holds), f={(1,1)}, f={(1,2)}, f={(2,2)}, f={(1,1),(2,2)}, and f={(1,2),(2,2)}. - _Dennis P. Walsh_, Nov 13 2015
		

Programs

  • Maple
    a:= n-> mul(ceil(n/k), k=1..n):
    seq(a(n), n=0..40); # Dennis P. Walsh, Nov 13 2015
  • Mathematica
    Table[Product[Ceiling[n/k],{k,n}],{n,25}] (* Harvey P. Dale, Sep 18 2011 *)
  • PARI
    a(n)=prod(k=1,n-1,floor((n+k-1)/k)) \\ Paul D. Hanna, Feb 01 2013
    
  • PARI
    a(n)=prod(k=1,n-1,((k+1)/k)^floor((n-1)/k))
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Feb 01 2013

Formula

a(n) = Product_{k=1..n} ceiling(n/k).
Formulas from Paul D. Hanna, Nov 26 2012: (Start)
a(n) = Product_{k=1..n-1} floor((n+k-1)/k) for n>1.
a(n) = Product_{k=1..n-1} ((k+1)/k)^floor((n-1)/k) for n>1.
Limits: Let L = limit a(n+1)/a(n) = 3.51748725590236964939979369932386417..., then
(1) L = exp( Sum_{n>=1} log((n+1)/n) / n ) ;
(2) L = 2 * exp( Sum_{n>=1} (-1)^(n+1) * Sum_{k>=2} 1/(n*k^(n+1)) ) ;
(4) L = exp( Sum_{n>=1} (-1)^(n+1) * zeta(n+1)/n ) ;
(5) L = exp( Sum_{n>=1} log(n+1) / (n*(n+1)) ) = exp(c) where c = constant A131688.
Compare L to Alladi-Grinstead constant defined by A085291 and A085361.
(End)
a(n) = A308820(n)/A092143(n-1) for n > 0. - Ridouane Oudra, Sep 28 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 30 2023

A127482 Product of the nonzero digital products of all the prime numbers prime(1) to prime(n).

Original entry on oeis.org

2, 6, 30, 210, 210, 630, 4410, 39690, 238140, 4286520, 12859560, 270050760, 1080203040, 12962436480, 362948221440, 5444223321600, 244990049472000, 1469940296832000, 61737492466944000, 432162447268608000, 9075411392640768000, 571750917736368384000
Offset: 1

Author

Alain Van Kerckhoven (alain(AT)avk.org), Sep 12 2007

Keywords

Examples

			a(7) = dp_10(2)*dp_10(3)*dp_10(5)*dp_10(7)*dp_10(11)*dp_10(13)*dp_10(17) = 2*3*5*7*(1*1)*(1*3)*(1*7) = 4410.
		

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 1, a(n-1)*mul(
         `if`(i=0, 1, i), i=convert(ithprime(n), base, 10)))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Mar 11 2022
  • Mathematica
    Rest[FoldList[Times,1,Times@@Cases[IntegerDigits[#],Except[0]]&/@ Prime[ Range[ 20]]]] (* Harvey P. Dale, Mar 19 2013 *)
  • PARI
    f(n) = vecprod(select(x->(x>1), digits(prime(n)))); \\ A101987
    a(n) = prod(k=1, n, f(k)); \\ Michel Marcus, Mar 11 2022
    
  • Python
    from math import prod
    from sympy import sieve
    def pod(s): return prod(int(d) for d in s if d != '0')
    def a(n): return pod("".join(str(sieve[i+1]) for i in range(n)))
    print([a(n) for n in range(1, 23)]) # Michael S. Branicky, Mar 11 2022

Formula

a(n) = Product_{k=1..n} dp_p(prime(k)) where prime(k)=A000040(k) and dp_p(m)=product of the nonzero digits of m in base p (p=10 for this sequence). - Hieronymus Fischer, Sep 29 2007
From Michel Marcus, Mar 11 2022: (Start)
a(n) = Product_{k=1..n} A051801(prime(k)).
a(n) = Product_{k=1..n} A101987(k). (End)

Extensions

Corrected and extended by Hieronymus Fischer, Sep 29 2007

A145119 a(n) = Product_{k=1..n-1} (ceiling(n/k) - ceiling(n/k) mod 2).

Original entry on oeis.org

1, 2, 4, 16, 32, 96, 384, 1024, 2048, 10240, 30720, 73728, 294912, 688128, 1835008, 12582912, 25165824, 56623104, 283115520, 629145600, 1887436800, 11072962560, 26575110144, 57982058496, 231928233984, 753766760448, 1758789107712
Offset: 1

Author

Reikku Kulon, Oct 02 2008

Keywords

Comments

Bounded by A010786 and A131385.
Each term has many more factors of two than any other prime factor.

Crossrefs

Programs

  • PARI
    a(n) = prod(k=1, n-1, ceil(n/k) - ceil(n/k) % 2); \\ Michel Marcus, Nov 17 2019
Showing 1-5 of 5 results.