cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A208448 Greatest common divisors of consecutive floor-factorial numbers (A010786).

Original entry on oeis.org

1, 1, 1, 2, 2, 6, 2, 8, 24, 60, 12, 288, 96, 84, 60, 3840, 384, 15552, 576, 14400, 20160, 221760, 576, 331776, 552960, 224640, 51840, 20321280, 2903040, 108864000, 345600, 17694720, 145981440, 51701760, 1935360, 11287019520, 1254113280, 2978519040, 10782720
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 26 2012

Keywords

Crossrefs

Programs

  • Haskell
    a208448 n = a208448_list !! (n-1)
    a208448_list = zipWith gcd a010786_list $ tail a010786_list
    
  • Mathematica
    GCD @@@ Partition[#, 2, 1] & [Array[Product[Quotient[#, k], {k, #}] &, 30]] (* Paolo Xausa, Feb 11 2025 *)
  • PARI
    f(n) = prod(k=1, n, n\k); \\ A010786
    a(n) = gcd(f(n+1), f(n)); \\ Michel Marcus, Feb 03 2022

Formula

a(n) = GCD(A010786(n+1),A010786(n)).

A208449 Numerator of A010786(n+1) / A010786(n).

Original entry on oeis.org

2, 3, 8, 5, 18, 7, 64, 27, 25, 11, 288, 13, 98, 225, 1024, 17, 729, 19, 2000, 147, 242, 23, 55296, 125, 169, 729, 10976, 29, 1125, 31, 32768, 1089, 289, 1225, 209952, 37, 722, 507, 640000, 41, 64827, 43, 42592, 91125, 1058, 47, 14155776, 343, 15625, 2601
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 26 2012

Keywords

Crossrefs

Cf. A208450 (denominator).

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a208449 n = a208449_list !! (n-1)
    a208449_list = map numerator $
       zipWith (%) (tail a010786_list) a010786_list
    
  • Mathematica
    A208449[n_] := Times @@ # / GCD[Times @@ #, Times @@ (# - 1)] & [Rest[Divisors[n + 1]]];
    Array[A208449, 100] (* Paolo Xausa, Feb 20 2025 *)
  • PARI
    f(n) = prod(k=1, n, n\k); \\ A010786
    a(n) = numerator(f(n+1)/f(n)); \\ Michel Marcus, Feb 08 2025

Formula

a(n) = A010786(n+1) / A208448(n).
a(n) = A007955(n+1)/gcd(A007955(n+1), A377484(n+1)). - Ridouane Oudra, Feb 03 2025

A208450 Denominator of A010786(n+1) / A010786(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 21, 16, 9, 10, 55, 12, 39, 112, 315, 16, 170, 18, 513, 80, 105, 22, 8855, 96, 75, 416, 3159, 28, 203, 30, 9765, 640, 132, 816, 32725, 36, 333, 304, 140049, 40, 13325, 42, 13545, 39424, 495, 46, 2080925, 288, 5292, 1600, 11475, 52, 117130
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 26 2012

Keywords

Crossrefs

Cf. A208449 (numerator).

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a208450 n = a208450_list !! (n-1)
    a208450_list = map denominator $
       zipWith (%) (tail a010786_list) a010786_list
  • Mathematica
    A208450[n_] := Times @@ (# - 1) / GCD[Times @@ #, Times @@ (# - 1)] & [Rest[Divisors[n + 1]]];
    Array[A208450, 100] (* Paolo Xausa, Feb 20 2025 *)

Formula

a(n) = A010786(n) / A208448(n).
a(n) = A377484(n+1)/gcd(A007955(n+1), A377484(n+1)). - Ridouane Oudra, Feb 08 2025

A131451 Product of the nonzero digital products of all the numbers 1 to n (a 'total digital-product factorial' in base 10).

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 362880, 362880, 725760, 2177280, 8709120, 43545600, 261273600, 1828915200, 14631321600, 131681894400, 263363788800, 526727577600, 2106910310400, 12641461862400, 101131694899200
Offset: 1

Views

Author

Hieronymus Fischer, Jul 11 2007

Keywords

Examples

			a(12)=dp_10(1)*dp_10(2)*dp_10(3)*...*dp_10(11)*dp_10(12)=1*2*3*4*5*6* 7*8*9*1*(1*1)*(1*2).
a(345)=3*4*5*3^45*4^5*(3-1)!^100*(4-1)!^10*(5-1)!^1*9!^64.
a(1000)=9!^300. a(1111)=9!^321.
		

Crossrefs

Programs

  • Maple
    with transforms;
    f:=proc(n) option remember; if n = 0 then 1 else f(n-1)*digprod0(n); fi; end;[seq(f(n),n=0..40)]; # N. J. A. Sloane, Oct 12 2013

Formula

The following formulas are given for general bases p>1:
a(n)=product{1<=k<=n, dp_p(k)} where dp_p(k) = product of the nonzero digits of k in base p.
a(n)=(n mod p)!*product{00}(floor(n/p^j)mod p)^(1+(n mod p^j))*((floor(n/p^j)mod p)-1)!^(p^j).
Recurrence: a(n+k*p^m)=a(n)*k^n*a(k*p^m) for 0<=k
a(n)=n!, for 0<=n
a(k*p^m)=k*(p-1)!^(k*m*p^(m-1))*(k-1)!^(p^m) for 0<=k
a(n)=(p-1)!^((m*p^(m+1)-(m+1)*p^m+1)/(p-1)^2)=(p-1)!^(1+2*p+3*p^2+...+m*p^(m-1)) for n=1+p+p^2+...+p^m.
a(n)=(p-1)!^(k*(m*p^(m+1)-(m+1)*p^m+1)/(p-1)^2)*(k-1)!^(p*(p^m-1)/(p-1))*k^(k*(p^(m+1)-(m+1)*p+m)/(p-1)^2)*k!*k^m, for n=k*(1+p+p^2+...+p^m).
For p=10: a(10^n)=9!^(n*10^(n-1)).
Asymptotic behavior: a(10^n)=10^(0.5559763...*n*10^n). Hence it grows slower than the factorial A000142(10^n) for which we have (10^n)!=10^((n-0.43429448...)*10^n+n/2+0.3990899...+o(1/n)). Example: a(1000) has 1668 digits, whereas 1000! has 2568 digits.

Extensions

New b-file from Hieronymus Fischer, Sep 10 2007
2 typos in the formula section removed by Hieronymus Fischer, Dec 05 2011

A092143 Cumulative product of all divisors of 1..n.

Original entry on oeis.org

1, 2, 6, 48, 240, 8640, 60480, 3870720, 104509440, 10450944000, 114960384000, 198651543552000, 2582470066176000, 506164132970496000, 113886929918361600000, 116620216236402278400000, 1982543676018838732800000, 11562194718541867489689600000, 219681699652295482304102400000
Offset: 1

Author

Jon Perry, Mar 31 2004

Keywords

Comments

Let p be a prime and let ordp(n,p) denote the exponent of the largest power of p which divides n. For example, ordp(48,2)=4 since 48 = 3*(2^4). Let b(n) = A006218(n) = Sum_{k=1..n} floor(n/k). The prime factorization of a(n) appears to be given by the following conjectural formula: ordp(a(n),p) = b(floor(n/p)) + b(floor(n/p^2)) + b(floor(n/p^3)) + ... . Compare with the comments in A129365. - Peter Bala, Apr 15 2007

Examples

			a(6) = 1*2*3*2*4*5*2*3*6 = 8640.
		

Programs

  • Magma
    [(&*[j^Floor(n/j): j in [1..n]]): n in [1..30]]; // G. C. Greubel, Feb 05 2024
    
  • Maple
    seq(sqrt(mul(k^numtheory[tau](k), k=1..n)), n=1..40); # Ridouane Oudra, Oct 31 2024
  • Mathematica
    Reap[For[n = k = 1, k <= 25, k++, Do[n = n*d, {d, Divisors[k]}]; Sow[n]]][[2, 1]] (* Jean-François Alcover, Oct 30 2012 *)
    Table[Product[k^Floor[n/k], {k, 1, n}], {n, 1, 25}] (* Vaclav Kotesovec, Jun 24 2021 *)
    FoldList[Times, Times @@@ Divisors[Range[25]]] (* Paolo Xausa, Nov 06 2024 *)
  • PARI
    my(z=1); for(i=1,25, fordiv(i,j,z*=j); print1(z, ", "))
    
  • SageMath
    [product(j^(n//j) for j in range(1,n+1)) for n in range(1,31)] # G. C. Greubel, Feb 05 2024

Formula

a(n) = Product_{k=1..n} {floor(n/k)}!. This formula is due to Sebastian Martin Ruiz. - Peter Bala, Apr 15 2007; Formula corrected by R. J. Mathar, May 06 2008
Sum_{n>=1} 1/a(n) = A117871. - Amiram Eldar, Nov 17 2020
log(a(n)) ~ n * log(n)^2 / 2. - Vaclav Kotesovec, Jun 20 2021
a(n) = Product_{k=1..n} k^floor(n/k). - Vaclav Kotesovec, Jun 24 2021
From Ridouane Oudra, Oct 31 2024: (Start)
a(n) = Product_{k=1..n} A007955(k).
a(n) = Product_{k=1..n} k^(tau(k)/2).
a(n) = sqrt(A175493(n)). (End)
a(n) = A000178(n)/A280714(n). - Amiram Eldar, Aug 16 2025

A131385 Product ceiling(n/1)*ceiling(n/2)*ceiling(n/3)*...*ceiling(n/n) (the 'ceiling factorial').

Original entry on oeis.org

1, 1, 2, 6, 16, 60, 144, 672, 1536, 6480, 19200, 76032, 165888, 1048320, 2257920, 8294400, 28311552, 126904320, 268738560, 1470873600, 3096576000, 16094453760, 51385466880, 175814737920, 366917713920, 2717245440000, 6782244618240, 22754631352320, 69918208819200
Offset: 0

Author

Hieronymus Fischer, Jul 08 2007

Keywords

Comments

From R. J. Mathar, Dec 05 2012: (Start)
a(n) = b(n-1) because a(n) = Product_{k=1..n} ceiling(n/k) = Product_{k=1..n-1} ceiling(n/k) = n*Product_{k=2..n-1} ceiling(n/k) = Product_{k=1..1} (1+(n-1)/k)*Product_{k=2..n-1} ceiling(n/k).
The cases of the product are (i) k divides n but does not divide n-1, ceiling(n/k) = n/k = 1 + floor((n-1)/k), (ii) k does not divide n but divides n-1, ceiling(n/k) = 1 + (n-1)/k = 1 + floor((n-1)/k) and (iii) k divides neither n nor n-1, ceiling(n/k) = 1 + floor((n-1)/k).
In all cases, including k=1, a(n) = Product_{k=1..n-1} (1+floor((n-1)/k)) = Product_{k=1..n-1} floor(1+(n-1)/k) = b(n-1).
(End)
a(n) is the number of functions f:D->{1,2,..,n-1} where D is any subset of {1,2,..,n-1} and where f(x) == 0 (mod x) for every x in D. - Dennis P. Walsh, Nov 13 2015

Examples

			From _Paul D. Hanna_, Nov 26 2012: (Start)
Illustrate initial terms using formula involving the floor function []:
  a(1) = 1;
  a(2) = [2/1] = 2;
  a(3) = [3/1]*[4/2] = 6;
  a(4) = [4/1]*[5/2]*[6/3] = 16;
  a(5) = [5/1]*[5/2]*[7/3]*[8/4] = 60;
  a(6) = [6/1]*[7/2]*[8/3]*[9/4]*[10/5] = 144.
Illustrate another alternative generating method:
  a(1) = 1;
  a(2) = (2/1)^[1/1] = 2;
  a(3) = (2/1)^[2/1] * (3/2)^[2/2] = 6;
  a(4) = (2/1)^[3/1] * (3/2)^[3/2] * (4/3)^[3/3] = 16;
  a(5) = (2/1)^[4/1] * (3/2)^[4/2] * (4/3)^[4/3] * (5/4)^[4/4] = 60.
(End)
For n=3 the a(3)=6 functions f from subsets of {1,2} into {1,2} with f(x) == 0 (mod x) are the following: f=empty set (since null function vacuously holds), f={(1,1)}, f={(1,2)}, f={(2,2)}, f={(1,1),(2,2)}, and f={(1,2),(2,2)}. - _Dennis P. Walsh_, Nov 13 2015
		

Programs

  • Maple
    a:= n-> mul(ceil(n/k), k=1..n):
    seq(a(n), n=0..40); # Dennis P. Walsh, Nov 13 2015
  • Mathematica
    Table[Product[Ceiling[n/k],{k,n}],{n,25}] (* Harvey P. Dale, Sep 18 2011 *)
  • PARI
    a(n)=prod(k=1,n-1,floor((n+k-1)/k)) \\ Paul D. Hanna, Feb 01 2013
    
  • PARI
    a(n)=prod(k=1,n-1,((k+1)/k)^floor((n-1)/k))
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Feb 01 2013

Formula

a(n) = Product_{k=1..n} ceiling(n/k).
Formulas from Paul D. Hanna, Nov 26 2012: (Start)
a(n) = Product_{k=1..n-1} floor((n+k-1)/k) for n>1.
a(n) = Product_{k=1..n-1} ((k+1)/k)^floor((n-1)/k) for n>1.
Limits: Let L = limit a(n+1)/a(n) = 3.51748725590236964939979369932386417..., then
(1) L = exp( Sum_{n>=1} log((n+1)/n) / n ) ;
(2) L = 2 * exp( Sum_{n>=1} (-1)^(n+1) * Sum_{k>=2} 1/(n*k^(n+1)) ) ;
(4) L = exp( Sum_{n>=1} (-1)^(n+1) * zeta(n+1)/n ) ;
(5) L = exp( Sum_{n>=1} log(n+1) / (n*(n+1)) ) = exp(c) where c = constant A131688.
Compare L to Alladi-Grinstead constant defined by A085291 and A085361.
(End)
a(n) = A308820(n)/A092143(n-1) for n > 0. - Ridouane Oudra, Sep 28 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 30 2023

A138534 Super least prime signatures; LCM of all signatures with n factors.

Original entry on oeis.org

1, 2, 12, 120, 5040, 110880, 43243200, 1470268800, 1173274502400, 269853135552000, 516498901446528000, 32022931889684736000, 3234636350177055183360000, 265240180714518525035520000, 1163343432613878250805790720000, 6014485546613750556665938022400000
Offset: 0

Author

Alford Arnold, Mar 28 2008

Keywords

Comments

Also the row product of the following table:
1
2
4 3
8 3 5
16 9 5 7
32 9 5 7 11
64 27 25 7 11 13
128 27 25 7 11 13 17
256 81 25 49 11 13 17 19
512 81 125 49 11 13 17 19 23
1024 243 125 49 121 13 17 19 23 29
...

Examples

			For n = 3 the signatures are {8, 12, 30} so a(3) = 120.
		

Crossrefs

Subsequence of A025487.
LCM of terms in rows of A215366.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i<2, 2^n,
          ilcm(seq(b(n-i*j, i-1)*ithprime(i)^j, j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..17);  # Alois P. Heinz, May 15 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i < 2, 2^n, LCM @@ Table[b[n - i j, i - 1] Prime[i]^j, {j, 0, n/i}]];
    a[n_] := b[n, n];
    a /@ Range[0, 17] (* Jean-François Alcover, Nov 02 2020, after Alois P. Heinz *)
    a[n_] := Product[Prime[k]^Floor[n/k], {k, 1, n}]; Array[a, 16, 0] (* Amiram Eldar, Jul 02 2021 *)
  • PARI
    a(n) = prod(k=1, n, prime(k)^(n\k)); \\ Michel Marcus, Jul 03 2021

Formula

From Amiram Eldar, Jul 02 2021: (Start)
a(n) = Product_{k=1..n} prime(k)^floor(n/k).
A001222(a(n)) = A006218(n). (End)
Sum_{n>=0} 1/a(n) = A346044. - Amiram Eldar, Jul 02 2023

Extensions

More terms from Reikku Kulon, Oct 02 2008

A345683 a(n) = n! * Sum_{k=1..n} 1/floor(n/k).

Original entry on oeis.org

1, 3, 14, 66, 444, 2880, 25080, 216720, 2247840, 24071040, 304335360, 3752179200, 54965433600, 810550540800, 13176376012800, 219079045785600, 4078723532083200, 75227891042304000, 1550619342784512000, 31871016307113984000, 710529031487987712000, 16180987966182014976000
Offset: 1

Author

Vaclav Kotesovec, Jun 23 2021

Keywords

Programs

  • Mathematica
    Table[n! * Sum[1/Floor[n/k], {k, 1, n}], {n, 1, 25}]
    Table[n!*(Sum[(Floor[n/j] - Floor[n/(j + 1)])/j, {j, 1, n}]), {n, 1, 25}]
  • PARI
    a(n) = n!*sum(k=1, n, 1/(n\k)); \\ Michel Marcus, Jun 24 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, (1-x^k)*log(1-x^k))/(1-x))) \\ Seiichi Manyama, Jul 23 2022
    
  • Python
    from math import factorial, isqrt
    def A345683(n): return (m:=factorial(n))*(n-1)+m//n+sum((q:=n//k)*(m//k-m//(k-1))+m//q for k in range(2,isqrt(n)+1)) # Chai Wah Wu, Oct 27 2023

Formula

a(n) ~ c * n * n!, where c = Sum_{j>=1} 1/(j^2*(j+1)) = Pi^2/6 - 1 = 0.644934... [proved by Harry Richman, see Mathoverflow link]
E.g.f.: -(1/(1-x)) * Sum_{k>0} (1 - x^k) * log(1 - x^k). - Seiichi Manyama, Jul 23 2022

A345682 a(n) = n! * Sum_{k=1..n} 1/(k*floor(n/k)).

Original entry on oeis.org

1, 2, 7, 26, 148, 804, 6228, 47424, 441936, 4288320, 50437440, 560373120, 7723935360, 106618256640, 1614841401600, 25127582054400, 446784010444800, 7727747269939200, 152873884406476800, 2966599550251008000, 62987912790921216000, 1378192085174919168000
Offset: 1

Author

Vaclav Kotesovec, Jun 23 2021

Keywords

Programs

  • Mathematica
    Table[n! * Sum[1/(k*Floor[n/k]), {k, 1, n}], {n, 1, 25}]
    Table[n! * Sum[(HarmonicNumber[Floor[n/j]] - HarmonicNumber[Floor[n/(1 + j)]])/j, {j, 1, n}], {n, 1, 25}]
  • PARI
    a(n) = n!*sum(k=1, n, 1/(k*(n\k))); \\ Michel Marcus, Jun 24 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, (1-x^k)*log(1-x^k)/k)/(1-x))) \\ Seiichi Manyama, Jul 23 2022

Formula

a(n) ~ c * n!, where c = Sum_{j>=1} log(1 + 1/j)/j = A131688 = 1.25774...
E.g.f.: -(1/(1-x)) * Sum_{k>0} (1 - x^k) * log(1 - x^k)/k. - Seiichi Manyama, Jul 23 2022

A131387 Product of the nonzero digital products of n for all the bases 1 to n (a 'total digital-product factorial').

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 12, 48, 48, 192, 2880, 2880, 25920, 552960, 3265920, 1935360, 116121600, 278691840, 9405849600, 26754416640, 94058496000, 3210529996800, 869100503040000, 423789959577600, 927040536576000, 135612787064832000
Offset: 1

Author

Hieronymus Fischer, Jul 08 2007

Keywords

Programs

  • PARI
    a(n) = {p = 1; for (b=2, n, digs = digits(n, b); p *= prod(k=1, #digs, if (digs[k], digs[k], 1));); return (p);} \\ Michel Marcus, Jul 15 2013

Formula

a(n)=product{1<=p<=n, dp_p(n)} where dp_p(n) = product of the nonzero digits of n in base p.
Showing 1-10 of 25 results. Next