cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A117871 Decimal expansion of Sum_{i>=1} 1/A092143(i).

Original entry on oeis.org

1, 6, 9, 1, 7, 9, 9, 2, 0, 9, 8, 2, 1, 7, 1, 2, 3, 5, 1, 3, 3, 9, 2, 6, 1, 8, 0, 6, 7, 8, 7, 6, 3, 1, 8, 6, 9, 8, 2, 3, 6, 9, 3, 7, 6, 2, 9, 2, 5, 8, 1, 9, 1, 3, 4, 5, 5, 6, 9, 5, 2, 0, 1, 4, 3, 4, 9, 2, 5, 7, 2, 0, 9, 1, 1, 5, 8, 3, 4, 5, 7, 1, 3, 0, 3, 9, 8, 3, 5, 9, 7, 3, 2, 5, 0, 1, 7, 7, 8, 0, 0, 2, 5, 3, 9
Offset: 1

Views

Author

Jonathan Vos Post, May 31 2007

Keywords

Comments

It follows from the Mingarelli reference that this number is irrational.

Examples

			1.6917992098217123513392618067876318698236937629258191345569...
		

Crossrefs

Cf. A092143.

Programs

  • Maple
    Digits := 60 : A092143 := proc(n) option remember ; local dvs ; if n = 1 then 1 ; else dvs := numtheory[divisors](n) ; A092143(n-1)*mul(i,i=dvs) ; fi ; end: A129635 := proc(isum) a := 0.0 ; for i from 1 to isum do a := a+1.0/A092143(i) ; print(evalf(a)) ; od ; RETURN(a) ; end: A129635(200) ; # R. J. Mathar, Sep 02 2007
  • Mathematica
    digits = 105; A092143[m_] := For[n = k = 1, k <= m, k++, Do[n = n*d, {d, Divisors[k]}]; If[k == m, Return[n]]] ;rd[j_] := rd[j] = RealDigits[ N[ Sum[ 1/A092143[m], {m, 1, 2^j}], digits]][[1]]; rd[j = 4]; While[ rd[j] != rd[j - 1], j++]; rd[j] (* Jean-François Alcover, Oct 30 2012 *)

Extensions

More terms from R. J. Mathar, Sep 02 2007
Edited by N. J. A. Sloane, Sep 16 2007 and May 06 2008
More digits from R. J. Mathar, Jul 12 2009

A092144 a(n) = A092143(n)/n!.

Original entry on oeis.org

1, 1, 1, 2, 2, 12, 12, 96, 288, 2880, 2880, 414720, 414720, 5806080, 87091200, 5573836800, 5573836800, 1805923123200, 1805923123200, 722369249280000, 15169754234880000, 333734593167360000, 333734593167360000, 4613547015945584640000, 23067735079727923200000
Offset: 1

Views

Author

Jon Perry, Mar 31 2004

Keywords

Crossrefs

Cf. A092143.

Programs

  • Magma
    [(&*[j^Floor(n/j): j in [1..n]])/Factorial(n): n in [1..40]]; // G. C. Greubel, Feb 05 2024
    
  • Mathematica
    Table[Product[k^Floor[n/k], {k,n}]/n!, {n,40}] (* G. C. Greubel, Feb 05 2024 *)
  • PARI
    my(z=1); for(i=1,20, fordiv(i,j,z*=j); print1(z/i!, ", "))
    
  • SageMath
    [product(j^(n//j) for j in range(1,n+1))//factorial(n) for n in range(1,41)] # G. C. Greubel, Feb 05 2024

Extensions

Terms a(21) onward added by G. C. Greubel, Feb 05 2024

A129439 An analog of Pascal's triangle: T(n,k) = A092143(n)/(A092143(n-k)*A092143(k)), 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 8, 12, 8, 1, 1, 5, 20, 20, 5, 1, 1, 36, 90, 240, 90, 36, 1, 1, 7, 126, 210, 210, 126, 7, 1, 1, 64, 224, 2688, 1680, 2688, 224, 64, 1, 1, 27, 864, 2016, 9072, 9072, 2016, 864, 27, 1, 1, 100, 1350, 28800, 25200, 181440, 25200, 28800, 1350, 100, 1
Offset: 0

Views

Author

Peter Bala, Apr 15 2007

Keywords

Comments

It appears that the T(n,k) are always integers. This would follow from the conjectured prime factorization given in the comments section of A092143.

Examples

			Triangle starts
  1;
  1, 1;
  1, 2,  1;
  1, 3,  3,  1;
  1, 8, 12,  8, 1;
  1, 5, 20, 20, 5, 1;
		

Crossrefs

Cf. A007955 (second column), A092143.

Programs

Formula

T(n,k) = Product_{j=1..n} floor(n/j)!/((Product_{j=1..n-k} floor((n-k)/j)!)*(Product_{j=1..k} floor(k/j)!)).
T(n, 1) = A007955(n).
T(n, n-k) = T(n, k). - G. C. Greubel, Feb 06 2024

A010786 Floor-factorial numbers: a(n) = Product_{k=1..n} floor(n/k).

Original entry on oeis.org

1, 1, 2, 3, 8, 10, 36, 42, 128, 216, 600, 660, 3456, 3744, 9408, 18900, 61440, 65280, 279936, 295488, 1152000, 2116800, 4878720, 5100480, 31850496, 41472000, 93450240, 163762560, 568995840, 589317120, 3265920000, 3374784000, 11324620800, 19269550080, 42188636160
Offset: 0

Views

Author

Keywords

Comments

Product floor(n/1)*floor(n/2)*floor(n/3)*...*floor(n/n).
a(n) is the number of functions f:[n]->[n] where f(x) is a multiple of x for all x in [n]. We note that there are floor[n/x] possible choices for each image of x under f. [Dennis P. Walsh, Nov 06 2014]

Examples

			For n=4 the a(4)=8 functions are given by the image sequences <1,2,3,4>, <1,4,3,4>, <2,2,3,4>, <2,4,3,4>, <3,2,3,4>, <3,4,3,4>, <4,2,3,4>, and <4,4,3,4>. [_Dennis P. Walsh_, Nov 06 2014]
		

Crossrefs

Programs

  • Haskell
    a010786 n = product $ map (div n) [1..n]
    -- Reinhard Zumkeller, Feb 26 2012
    
  • Magma
    [&*[n div i: i in [1..n]]: n in [1..35]]; // Vincenzo Librandi, Oct 03 2018
  • Maple
    a := n -> mul( floor(n/k), k=1..n);
  • Mathematica
    Table[Product[Floor[n/k],{k,n}],{n,40}] (* Harvey P. Dale, May 09 2017 *)
  • PARI
    vector(50, n, prod(k=1, n, n\k)) \\ Michel Marcus, Nov 10 2014
    

Formula

a(n+1) = a(n)*A208449(n)/A208450(n). - Reinhard Zumkeller, Feb 26 2012
GCD(a(n), a(n+1)) = A208448(n). - Reinhard Zumkeller, Feb 26 2012
From Vaclav Kotesovec, Oct 03 2018: (Start)
log(a(n)) ~ c * (n - log(2*Pi*n)/2), where c = 0.7885...
Conjecture: c = A085361. (End)
From Ridouane Oudra, Jan 18 2025: (Start)
a(n) = Product_{k=1..n} ((k+1)/k)^floor(n/(k+1)).
a(n) = Product_{k=1..n} k^A075993(n, k).
a(n) = A092143(n)/f(n), where f(n) = Product_{k=1..n} ((floor(n/k)-1)!).
a(n) = A092143(n)/g(n), where g(n) = Product_{k=1..n} A377484(k).
a(n)/a(n-1) = A007955(n)/A377484(n). (End)

Extensions

More terms from Hieronymus Fischer, Jul 08 2007
Edited by N. J. A. Sloane, Jul 05 2008 at the suggestion of Rick L. Shepherd
a(0)=1 prepended by Alois P. Heinz, Oct 30 2023

A131385 Product ceiling(n/1)*ceiling(n/2)*ceiling(n/3)*...*ceiling(n/n) (the 'ceiling factorial').

Original entry on oeis.org

1, 1, 2, 6, 16, 60, 144, 672, 1536, 6480, 19200, 76032, 165888, 1048320, 2257920, 8294400, 28311552, 126904320, 268738560, 1470873600, 3096576000, 16094453760, 51385466880, 175814737920, 366917713920, 2717245440000, 6782244618240, 22754631352320, 69918208819200
Offset: 0

Views

Author

Hieronymus Fischer, Jul 08 2007

Keywords

Comments

From R. J. Mathar, Dec 05 2012: (Start)
a(n) = b(n-1) because a(n) = Product_{k=1..n} ceiling(n/k) = Product_{k=1..n-1} ceiling(n/k) = n*Product_{k=2..n-1} ceiling(n/k) = Product_{k=1..1} (1+(n-1)/k)*Product_{k=2..n-1} ceiling(n/k).
The cases of the product are (i) k divides n but does not divide n-1, ceiling(n/k) = n/k = 1 + floor((n-1)/k), (ii) k does not divide n but divides n-1, ceiling(n/k) = 1 + (n-1)/k = 1 + floor((n-1)/k) and (iii) k divides neither n nor n-1, ceiling(n/k) = 1 + floor((n-1)/k).
In all cases, including k=1, a(n) = Product_{k=1..n-1} (1+floor((n-1)/k)) = Product_{k=1..n-1} floor(1+(n-1)/k) = b(n-1).
(End)
a(n) is the number of functions f:D->{1,2,..,n-1} where D is any subset of {1,2,..,n-1} and where f(x) == 0 (mod x) for every x in D. - Dennis P. Walsh, Nov 13 2015

Examples

			From _Paul D. Hanna_, Nov 26 2012: (Start)
Illustrate initial terms using formula involving the floor function []:
  a(1) = 1;
  a(2) = [2/1] = 2;
  a(3) = [3/1]*[4/2] = 6;
  a(4) = [4/1]*[5/2]*[6/3] = 16;
  a(5) = [5/1]*[5/2]*[7/3]*[8/4] = 60;
  a(6) = [6/1]*[7/2]*[8/3]*[9/4]*[10/5] = 144.
Illustrate another alternative generating method:
  a(1) = 1;
  a(2) = (2/1)^[1/1] = 2;
  a(3) = (2/1)^[2/1] * (3/2)^[2/2] = 6;
  a(4) = (2/1)^[3/1] * (3/2)^[3/2] * (4/3)^[3/3] = 16;
  a(5) = (2/1)^[4/1] * (3/2)^[4/2] * (4/3)^[4/3] * (5/4)^[4/4] = 60.
(End)
For n=3 the a(3)=6 functions f from subsets of {1,2} into {1,2} with f(x) == 0 (mod x) are the following: f=empty set (since null function vacuously holds), f={(1,1)}, f={(1,2)}, f={(2,2)}, f={(1,1),(2,2)}, and f={(1,2),(2,2)}. - _Dennis P. Walsh_, Nov 13 2015
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(ceil(n/k), k=1..n):
    seq(a(n), n=0..40); # Dennis P. Walsh, Nov 13 2015
  • Mathematica
    Table[Product[Ceiling[n/k],{k,n}],{n,25}] (* Harvey P. Dale, Sep 18 2011 *)
  • PARI
    a(n)=prod(k=1,n-1,floor((n+k-1)/k)) \\ Paul D. Hanna, Feb 01 2013
    
  • PARI
    a(n)=prod(k=1,n-1,((k+1)/k)^floor((n-1)/k))
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Feb 01 2013

Formula

a(n) = Product_{k=1..n} ceiling(n/k).
Formulas from Paul D. Hanna, Nov 26 2012: (Start)
a(n) = Product_{k=1..n-1} floor((n+k-1)/k) for n>1.
a(n) = Product_{k=1..n-1} ((k+1)/k)^floor((n-1)/k) for n>1.
Limits: Let L = limit a(n+1)/a(n) = 3.51748725590236964939979369932386417..., then
(1) L = exp( Sum_{n>=1} log((n+1)/n) / n ) ;
(2) L = 2 * exp( Sum_{n>=1} (-1)^(n+1) * Sum_{k>=2} 1/(n*k^(n+1)) ) ;
(4) L = exp( Sum_{n>=1} (-1)^(n+1) * zeta(n+1)/n ) ;
(5) L = exp( Sum_{n>=1} log(n+1) / (n*(n+1)) ) = exp(c) where c = constant A131688.
Compare L to Alladi-Grinstead constant defined by A085291 and A085361.
(End)
a(n) = A308820(n)/A092143(n-1) for n > 0. - Ridouane Oudra, Sep 28 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 30 2023

A345683 a(n) = n! * Sum_{k=1..n} 1/floor(n/k).

Original entry on oeis.org

1, 3, 14, 66, 444, 2880, 25080, 216720, 2247840, 24071040, 304335360, 3752179200, 54965433600, 810550540800, 13176376012800, 219079045785600, 4078723532083200, 75227891042304000, 1550619342784512000, 31871016307113984000, 710529031487987712000, 16180987966182014976000
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[1/Floor[n/k], {k, 1, n}], {n, 1, 25}]
    Table[n!*(Sum[(Floor[n/j] - Floor[n/(j + 1)])/j, {j, 1, n}]), {n, 1, 25}]
  • PARI
    a(n) = n!*sum(k=1, n, 1/(n\k)); \\ Michel Marcus, Jun 24 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, (1-x^k)*log(1-x^k))/(1-x))) \\ Seiichi Manyama, Jul 23 2022
    
  • Python
    from math import factorial, isqrt
    def A345683(n): return (m:=factorial(n))*(n-1)+m//n+sum((q:=n//k)*(m//k-m//(k-1))+m//q for k in range(2,isqrt(n)+1)) # Chai Wah Wu, Oct 27 2023

Formula

a(n) ~ c * n * n!, where c = Sum_{j>=1} 1/(j^2*(j+1)) = Pi^2/6 - 1 = 0.644934... [proved by Harry Richman, see Mathoverflow link]
E.g.f.: -(1/(1-x)) * Sum_{k>0} (1 - x^k) * log(1 - x^k). - Seiichi Manyama, Jul 23 2022

A345682 a(n) = n! * Sum_{k=1..n} 1/(k*floor(n/k)).

Original entry on oeis.org

1, 2, 7, 26, 148, 804, 6228, 47424, 441936, 4288320, 50437440, 560373120, 7723935360, 106618256640, 1614841401600, 25127582054400, 446784010444800, 7727747269939200, 152873884406476800, 2966599550251008000, 62987912790921216000, 1378192085174919168000
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[1/(k*Floor[n/k]), {k, 1, n}], {n, 1, 25}]
    Table[n! * Sum[(HarmonicNumber[Floor[n/j]] - HarmonicNumber[Floor[n/(1 + j)]])/j, {j, 1, n}], {n, 1, 25}]
  • PARI
    a(n) = n!*sum(k=1, n, 1/(k*(n\k))); \\ Michel Marcus, Jun 24 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, (1-x^k)*log(1-x^k)/k)/(1-x))) \\ Seiichi Manyama, Jul 23 2022

Formula

a(n) ~ c * n!, where c = Sum_{j>=1} log(1 + 1/j)/j = A131688 = 1.25774...
E.g.f.: -(1/(1-x)) * Sum_{k>0} (1 - x^k) * log(1 - x^k)/k. - Seiichi Manyama, Jul 23 2022

A345684 a(n) = n! * Sum_{k=1..n} k/floor(n/k).

Original entry on oeis.org

1, 5, 32, 198, 1584, 12480, 122520, 1214640, 14011200, 166924800, 2274894720, 31135104000, 485667705600, 7710089587200, 133974352512000, 2386854434764800, 46621903994265600, 918384939343872000, 19760215067873280000, 430137075045629952000, 10042411264251125760000
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!*Sum[k/Floor[n/k], {k, 1, n}], {n, 1, 25}]
    Table[n!*Sum[(Floor[n/j] - Floor[n/(1 + j)])*((1 + Floor[n/j] + Floor[n/(1 + j)])/2/j), {j, 1, n}], {n, 1, 25}]
  • PARI
    a(n) = n!*sum(k=1, n, k/(n\k)); \\ Michel Marcus, Jun 23 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, k*(1-x^k)*log(1-x^k))/(1-x))) \\ Seiichi Manyama, Jul 23 2022

Formula

a(n) ~ c * n^2 * n!, where c = Sum_{j>=1} (2*j + 1) / (2*j^3*(j+1)^2) = Pi^2/12 + zeta(3)/2 - 1 = 0.423495...
E.g.f.: -(1/(1-x)) * Sum_{k>0} k * (1 - x^k) * log(1 - x^k). - Seiichi Manyama, Jul 23 2022

A129364 a(n) = Product_{k = 1..n} A066841(k).

Original entry on oeis.org

1, 2, 6, 96, 480, 207360, 1451520, 2972712960, 722369249280, 5778953994240000, 63568493936640000, 9111096278347394580480000, 118444251618516129546240000, 10400352846118664303196241920000
Offset: 1

Views

Author

Peter Bala, Apr 11 2007

Keywords

Comments

Conjecture: a(n) divides A092287(n) for all n - see comments in A129365.

Crossrefs

Programs

  • Mathematica
    Table[Product[Floor[n/k]!^k, {k, 1, n}], {n, 1, 15}] (* Vaclav Kotesovec, Jun 24 2021 *)
    Table[Product[k^(Floor[n/k]*(1 + Floor[n/k])/2), {k, 1, n}], {n, 1, 15}] (* Vaclav Kotesovec, Jun 24 2021 *)
  • PARI
    a(n) = prod(k=1, n, k^((n\k) * (1 + n\k) \ 2)); \\ Daniel Suteu, Sep 12 2018

Formula

a(n) = Product_{k = 1..n} Product_{d|k} d^(k/d).
a(n) = Product_{k = 1..n} ((floor(n/k))!)^k.
a(n) = exp(Sum_{k = 1..n} log(k)/2 * floor(n/k) * floor(1 + n/k)). - Daniel Suteu, Sep 12 2018
log(a(n)) ~ c * n^2, where c = -zeta'(2)/2 = A073002/2 = 0.468774... - Vaclav Kotesovec, Jun 24 2021

A345466 a(n) = Product_{k=1..n} binomial(n, floor(n/k)).

Original entry on oeis.org

1, 1, 2, 9, 96, 1250, 64800, 1764735, 224788480, 22499086176, 6123600000000, 408514437465750, 1308805762115174400, 133962125607455951520, 99335199198879310098432, 113040832521732593994140625, 425230288403106927476736000000, 72623663171934137824096600064000
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 20 2021

Keywords

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else (&*[Binomial(n,Floor(n/j)): j in [1..n]]): n in [0..30]]; // G. C. Greubel, Feb 05 2024
    
  • Mathematica
    Table[Product[Binomial[n, Floor[n/k]], {k, 1, n}], {n, 0, 20}]
    Table[Product[((n + 1)/k - 1)^Floor[n/k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 24 2021 *)
  • SageMath
    [product(binomial(n,(n//j)) for j in range(1,n+1)) for n in range(31)] # G. C. Greubel, Feb 05 2024

Formula

log(a(n)) ~ n * log(n)^2 / 2. - Vaclav Kotesovec, Jun 21 2021
a(n) = Product_{k=1..n} ((n+1)/k - 1)^floor(n/k). - Vaclav Kotesovec, Jun 24 2021
Showing 1-10 of 15 results. Next