cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A129365 a(n) = A092287(n)/A129364(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 6, 48, 48, 48, 48, 1536, 207360, 207360, 207360, 1105920, 1105920, 17694720, 30098718720, 15410543984640, 15410543984640, 481579499520, 60197437440000, 123284351877120000, 29958097506140160000
Offset: 1

Views

Author

Peter Bala, Apr 13 2007

Keywords

Comments

Conjectures:
A) a(n) is always an integer.
B) If p is a prime then p|a(n) if and only if p <= n/3. Let ordp(n,p) denote the exponent of the largest power of p which divides n. For example, ordp(48,2) = 4 since 48 = 3*(2^4). The precise decomposition of a(n) into primes would follow from the following two conjectures:
C) For each positive integer n and prime p, ordp(a(n*p),p) = ordp(a(n*p+1),p) = ordp(a(n*p+2),p) = . . . = ordp(a(n*p+p-1),p).
D) Let b(n) = A004125(n). Then ordp(a(n*p),p) = b(n) + b(floor(n/p)) + b(floor(n/p^2)) + b(floor(n/p^3)) + .... This is reminiscent of de Polignac's formula (also due to Legendre) for the prime factorization of n! (see the link).

Crossrefs

Formula

a(n) = ( Product_{j = 1..n} Product_{k = 1..n} gcd(j,k) ) / ( Product_{j = 1..n} Product_{d|j} d^(j/d) ).
a(n) = ( Product_{j = 1..n} Product_{k = 1..n} gcd(j,k) ) / ( Product_{k = 1..n} (floor(n/k)!)^k ).

A092143 Cumulative product of all divisors of 1..n.

Original entry on oeis.org

1, 2, 6, 48, 240, 8640, 60480, 3870720, 104509440, 10450944000, 114960384000, 198651543552000, 2582470066176000, 506164132970496000, 113886929918361600000, 116620216236402278400000, 1982543676018838732800000, 11562194718541867489689600000, 219681699652295482304102400000
Offset: 1

Views

Author

Jon Perry, Mar 31 2004

Keywords

Comments

Let p be a prime and let ordp(n,p) denote the exponent of the largest power of p which divides n. For example, ordp(48,2)=4 since 48 = 3*(2^4). Let b(n) = A006218(n) = Sum_{k=1..n} floor(n/k). The prime factorization of a(n) appears to be given by the following conjectural formula: ordp(a(n),p) = b(floor(n/p)) + b(floor(n/p^2)) + b(floor(n/p^3)) + ... . Compare with the comments in A129365. - Peter Bala, Apr 15 2007

Examples

			a(6) = 1*2*3*2*4*5*2*3*6 = 8640.
		

Crossrefs

Programs

  • Magma
    [(&*[j^Floor(n/j): j in [1..n]]): n in [1..30]]; // G. C. Greubel, Feb 05 2024
    
  • Maple
    seq(sqrt(mul(k^numtheory[tau](k), k=1..n)), n=1..40); # Ridouane Oudra, Oct 31 2024
  • Mathematica
    Reap[For[n = k = 1, k <= 25, k++, Do[n = n*d, {d, Divisors[k]}]; Sow[n]]][[2, 1]] (* Jean-François Alcover, Oct 30 2012 *)
    Table[Product[k^Floor[n/k], {k, 1, n}], {n, 1, 25}] (* Vaclav Kotesovec, Jun 24 2021 *)
    FoldList[Times, Times @@@ Divisors[Range[25]]] (* Paolo Xausa, Nov 06 2024 *)
  • PARI
    my(z=1); for(i=1,25, fordiv(i,j,z*=j); print1(z, ", "))
    
  • SageMath
    [product(j^(n//j) for j in range(1,n+1)) for n in range(1,31)] # G. C. Greubel, Feb 05 2024

Formula

a(n) = Product_{k=1..n} {floor(n/k)}!. This formula is due to Sebastian Martin Ruiz. - Peter Bala, Apr 15 2007; Formula corrected by R. J. Mathar, May 06 2008
Sum_{n>=1} 1/a(n) = A117871. - Amiram Eldar, Nov 17 2020
log(a(n)) ~ n * log(n)^2 / 2. - Vaclav Kotesovec, Jun 20 2021
a(n) = Product_{k=1..n} k^floor(n/k). - Vaclav Kotesovec, Jun 24 2021
From Ridouane Oudra, Oct 31 2024: (Start)
a(n) = Product_{k=1..n} A007955(k).
a(n) = Product_{k=1..n} k^(tau(k)/2).
a(n) = sqrt(A175493(n)). (End)
a(n) = A000178(n)/A280714(n). - Amiram Eldar, Aug 16 2025

A345726 a(n) = Product_{k=1..n} k^(floor(n/k)^2).

Original entry on oeis.org

1, 2, 6, 192, 960, 4976640, 34836480, 2283043553280, 4993016251023360, 3195530400654950400000, 35150834407204454400000, 417877827219530751882239882035200000, 5432411753853899774469118466457600000, 213700126654516647665669790727613605478400000
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 25 2021

Keywords

Crossrefs

Programs

  • Magma
    [(&*[j^(Floor(n/j))^2: j in [1..n]]): n in [1..30]]; // G. C. Greubel, Feb 05 2024
    
  • Mathematica
    Table[Product[k^(Floor[n/k]^2), {k, 1, n}], {n, 1, 15}]
  • PARI
    a(n) = prod(k=1, n, k^((n\k)^2)); \\ Michel Marcus, Jun 26 2021
    
  • SageMath
    [product(j^((n//j)^2) for j in range(1,n+1)) for n in range(1,31)] # G. C. Greubel, Feb 05 2024

Formula

log(a(n)) ~ c * n^2, where c = -zeta'(2) = A073002.
Showing 1-3 of 3 results.