Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 2, 6, 48, 48, 48, 48, 1536, 207360, 207360, 207360, 1105920, 1105920, 17694720, 30098718720, 15410543984640, 15410543984640, 481579499520, 60197437440000, 123284351877120000, 29958097506140160000
Offset: 1
A092143
Cumulative product of all divisors of 1..n.
Original entry on oeis.org
1, 2, 6, 48, 240, 8640, 60480, 3870720, 104509440, 10450944000, 114960384000, 198651543552000, 2582470066176000, 506164132970496000, 113886929918361600000, 116620216236402278400000, 1982543676018838732800000, 11562194718541867489689600000, 219681699652295482304102400000
Offset: 1
a(6) = 1*2*3*2*4*5*2*3*6 = 8640.
-
[(&*[j^Floor(n/j): j in [1..n]]): n in [1..30]]; // G. C. Greubel, Feb 05 2024
-
seq(sqrt(mul(k^numtheory[tau](k), k=1..n)), n=1..40); # Ridouane Oudra, Oct 31 2024
-
Reap[For[n = k = 1, k <= 25, k++, Do[n = n*d, {d, Divisors[k]}]; Sow[n]]][[2, 1]] (* Jean-François Alcover, Oct 30 2012 *)
Table[Product[k^Floor[n/k], {k, 1, n}], {n, 1, 25}] (* Vaclav Kotesovec, Jun 24 2021 *)
FoldList[Times, Times @@@ Divisors[Range[25]]] (* Paolo Xausa, Nov 06 2024 *)
-
my(z=1); for(i=1,25, fordiv(i,j,z*=j); print1(z, ", "))
-
[product(j^(n//j) for j in range(1,n+1)) for n in range(1,31)] # G. C. Greubel, Feb 05 2024
A345726
a(n) = Product_{k=1..n} k^(floor(n/k)^2).
Original entry on oeis.org
1, 2, 6, 192, 960, 4976640, 34836480, 2283043553280, 4993016251023360, 3195530400654950400000, 35150834407204454400000, 417877827219530751882239882035200000, 5432411753853899774469118466457600000, 213700126654516647665669790727613605478400000
Offset: 1
-
[(&*[j^(Floor(n/j))^2: j in [1..n]]): n in [1..30]]; // G. C. Greubel, Feb 05 2024
-
Table[Product[k^(Floor[n/k]^2), {k, 1, n}], {n, 1, 15}]
-
a(n) = prod(k=1, n, k^((n\k)^2)); \\ Michel Marcus, Jun 26 2021
-
[product(j^((n//j)^2) for j in range(1,n+1)) for n in range(1,31)] # G. C. Greubel, Feb 05 2024
Showing 1-3 of 3 results.
Comments