cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A092143 Cumulative product of all divisors of 1..n.

Original entry on oeis.org

1, 2, 6, 48, 240, 8640, 60480, 3870720, 104509440, 10450944000, 114960384000, 198651543552000, 2582470066176000, 506164132970496000, 113886929918361600000, 116620216236402278400000, 1982543676018838732800000, 11562194718541867489689600000, 219681699652295482304102400000
Offset: 1

Views

Author

Jon Perry, Mar 31 2004

Keywords

Comments

Let p be a prime and let ordp(n,p) denote the exponent of the largest power of p which divides n. For example, ordp(48,2)=4 since 48 = 3*(2^4). Let b(n) = A006218(n) = Sum_{k=1..n} floor(n/k). The prime factorization of a(n) appears to be given by the following conjectural formula: ordp(a(n),p) = b(floor(n/p)) + b(floor(n/p^2)) + b(floor(n/p^3)) + ... . Compare with the comments in A129365. - Peter Bala, Apr 15 2007

Examples

			a(6) = 1*2*3*2*4*5*2*3*6 = 8640.
		

Crossrefs

Programs

  • Magma
    [(&*[j^Floor(n/j): j in [1..n]]): n in [1..30]]; // G. C. Greubel, Feb 05 2024
    
  • Maple
    seq(sqrt(mul(k^numtheory[tau](k), k=1..n)), n=1..40); # Ridouane Oudra, Oct 31 2024
  • Mathematica
    Reap[For[n = k = 1, k <= 25, k++, Do[n = n*d, {d, Divisors[k]}]; Sow[n]]][[2, 1]] (* Jean-François Alcover, Oct 30 2012 *)
    Table[Product[k^Floor[n/k], {k, 1, n}], {n, 1, 25}] (* Vaclav Kotesovec, Jun 24 2021 *)
    FoldList[Times, Times @@@ Divisors[Range[25]]] (* Paolo Xausa, Nov 06 2024 *)
  • PARI
    my(z=1); for(i=1,25, fordiv(i,j,z*=j); print1(z, ", "))
    
  • SageMath
    [product(j^(n//j) for j in range(1,n+1)) for n in range(1,31)] # G. C. Greubel, Feb 05 2024

Formula

a(n) = Product_{k=1..n} {floor(n/k)}!. This formula is due to Sebastian Martin Ruiz. - Peter Bala, Apr 15 2007; Formula corrected by R. J. Mathar, May 06 2008
Sum_{n>=1} 1/a(n) = A117871. - Amiram Eldar, Nov 17 2020
log(a(n)) ~ n * log(n)^2 / 2. - Vaclav Kotesovec, Jun 20 2021
a(n) = Product_{k=1..n} k^floor(n/k). - Vaclav Kotesovec, Jun 24 2021
From Ridouane Oudra, Oct 31 2024: (Start)
a(n) = Product_{k=1..n} A007955(k).
a(n) = Product_{k=1..n} k^(tau(k)/2).
a(n) = sqrt(A175493(n)). (End)
a(n) = A000178(n)/A280714(n). - Amiram Eldar, Aug 16 2025

A092287 a(n) = Product_{j=1..n} Product_{k=1..n} gcd(j,k).

Original entry on oeis.org

1, 1, 2, 6, 96, 480, 414720, 2903040, 5945425920, 4334215495680, 277389791723520000, 3051287708958720000, 437332621360674939863040000, 5685324077688774218219520000, 15974941971638268369709427589120000, 982608696336737613503095822614528000000000
Offset: 0

Views

Author

N. J. A. Sloane, based on a suggestion from Leroy Quet, Feb 03 2004

Keywords

Comments

Conjecture: Let p be a prime and let ordp(n,p) denote the exponent of the highest power of p that divides n. For example, ordp(48,2)=4, since 48=3*(2^4). Then we conjecture that the prime factorization of a(n) is given by the formula: ordp(a(n),p) = (floor(n/p))^2 + (floor(n/p^2))^2 + (floor(n/p^3))^2 + .... Compare this to the de Polignac-Legendre formula for the prime factorization of n!: ordp(n!,p) = floor(n/p) + floor(n/p^2) + floor(n/p^3) + .... This suggests that a(n) can be considered as generalization of n!. See A129453 for the analog for a(n) of Pascal's triangle. See A129454 for the sequence defined as a triple product of gcd(i,j,k). - Peter Bala, Apr 16 2007
The conjecture is correct. - Charles R Greathouse IV, Apr 02 2013
a(n)/a(n-1) = n, n >= 1, if and only if n is noncomposite, otherwise a(n)/a(n-1) = n * f^2, f > 1. - Daniel Forgues, Apr 07 2013
Conjecture: For a product over a rectangle, f(n,m) = Product_{j=1..n} Product_{k=1..m} gcd(j,k), a factorization similar to the one given above for the square case takes place: ordp(f(n,m),p) = floor(n/p)*floor(m/p) + floor(n/p^2)*floor(m/p^2) + .... By way of directly computing the values of f(n,m), it can be verified that the conjecture holds at least for all 1 <= m <= n <= 200. - Andrey Kaydalov, Mar 11 2019

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else (&*[(&*[GCD(j,k): k in [1..n]]): j in [1..n]]): n in [0..30]]; // G. C. Greubel, Feb 07 2024
  • Maple
    f := n->mul(mul(igcd(j,k),k=1..n),j=1..n);
  • Mathematica
    a[0] = 1; a[n_] := a[n] = n*Product[GCD[k, n], {k, 1, n-1}]^2*a[n-1]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 16 2013, after Daniel Forgues *)
  • PARI
    h(n,p)=if(nCharles R Greathouse IV, Apr 02 2013
    
  • Sage
    def A092287(n):
        R = 1
        for p in primes(n+1) :
            s = 0; r = n
            while r > 0 :
                r = r//p
                s += r*r
            R *= p^s
        return R
    [A092287(i) for i in (0..15)]  # Peter Luschny, Apr 10 2013
    

Formula

Also a(n) = Product_{k=1..n} Product_{j=1..n} lcm(1..floor(min(n/k, n/j))).
From Daniel Forgues, Apr 08 2013: (Start)
Recurrence: a(0) := 1; for n > 0: a(n) := n * (Product_{j=1..n-1} gcd(n,j))^2 * a(n-1) = n * A051190(n)^2 * a(n-1).
Formula for n >= 0: a(n) = n! * (Product_{j=1..n} Product_{k=1..j-1} gcd(j,k))^2. (End)
a(n) = n! * A224479(n)^2 (the last formula above).
a(n) = n$ * A224497(n)^4, n$ the swinging factorial A056040(n). - Peter Luschny, Apr 10 2013

Extensions

Recurrence formula corrected by Daniel Forgues, Apr 07 2013

A129364 a(n) = Product_{k = 1..n} A066841(k).

Original entry on oeis.org

1, 2, 6, 96, 480, 207360, 1451520, 2972712960, 722369249280, 5778953994240000, 63568493936640000, 9111096278347394580480000, 118444251618516129546240000, 10400352846118664303196241920000
Offset: 1

Views

Author

Peter Bala, Apr 11 2007

Keywords

Comments

Conjecture: a(n) divides A092287(n) for all n - see comments in A129365.

Crossrefs

Programs

  • Mathematica
    Table[Product[Floor[n/k]!^k, {k, 1, n}], {n, 1, 15}] (* Vaclav Kotesovec, Jun 24 2021 *)
    Table[Product[k^(Floor[n/k]*(1 + Floor[n/k])/2), {k, 1, n}], {n, 1, 15}] (* Vaclav Kotesovec, Jun 24 2021 *)
  • PARI
    a(n) = prod(k=1, n, k^((n\k) * (1 + n\k) \ 2)); \\ Daniel Suteu, Sep 12 2018

Formula

a(n) = Product_{k = 1..n} Product_{d|k} d^(k/d).
a(n) = Product_{k = 1..n} ((floor(n/k))!)^k.
a(n) = exp(Sum_{k = 1..n} log(k)/2 * floor(n/k) * floor(1 + n/k)). - Daniel Suteu, Sep 12 2018
log(a(n)) ~ c * n^2, where c = -zeta'(2)/2 = A073002/2 = 0.468774... - Vaclav Kotesovec, Jun 24 2021

A090494 Product_{j=1..n} Product_{k=1..n} lcm(j,k).

Original entry on oeis.org

1, 1, 8, 7776, 1146617856, 1289945088000000000, 46798828032806092800000000000, 2350577043461005964030008507760640000000000000, 8206262459636402163263383676462776103575725539328000000000000000, 2746781358330240881921653545637784861521126603512175621574459373964492800000000000000000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2004

Keywords

Crossrefs

Programs

  • Maple
    f := n->mul(mul(lcm(j,k),k=1..n),j=1..n);

Formula

Let p be a prime and let ordp(n,p) denote the exponent of the largest power of p which divides n. For example, ordp(48,2)=4 since 48 = 3*(2^4). Then the prime factorization of a(n) appears to be given by the formula ordp(a(n),p)= sum_{k >= 1} [(2*(p^k)-1)*floor((n/(p^k)))^2] + 2*sum_{k >= 1} [floor(n/(p^k))*mod(n,p^k)], for each prime p. See the comments sections of A092143, A092287, A129365 and A129454 for similar conjectural prime factorizations. - Peter Bala, Apr 23 2007
Showing 1-4 of 4 results.