cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A129365 a(n) = A092287(n)/A129364(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 6, 48, 48, 48, 48, 1536, 207360, 207360, 207360, 1105920, 1105920, 17694720, 30098718720, 15410543984640, 15410543984640, 481579499520, 60197437440000, 123284351877120000, 29958097506140160000
Offset: 1

Views

Author

Peter Bala, Apr 13 2007

Keywords

Comments

Conjectures:
A) a(n) is always an integer.
B) If p is a prime then p|a(n) if and only if p <= n/3. Let ordp(n,p) denote the exponent of the largest power of p which divides n. For example, ordp(48,2) = 4 since 48 = 3*(2^4). The precise decomposition of a(n) into primes would follow from the following two conjectures:
C) For each positive integer n and prime p, ordp(a(n*p),p) = ordp(a(n*p+1),p) = ordp(a(n*p+2),p) = . . . = ordp(a(n*p+p-1),p).
D) Let b(n) = A004125(n). Then ordp(a(n*p),p) = b(n) + b(floor(n/p)) + b(floor(n/p^2)) + b(floor(n/p^3)) + .... This is reminiscent of de Polignac's formula (also due to Legendre) for the prime factorization of n! (see the link).

Crossrefs

Formula

a(n) = ( Product_{j = 1..n} Product_{k = 1..n} gcd(j,k) ) / ( Product_{j = 1..n} Product_{d|j} d^(j/d) ).
a(n) = ( Product_{j = 1..n} Product_{k = 1..n} gcd(j,k) ) / ( Product_{k = 1..n} (floor(n/k)!)^k ).

A129453 An analog of Pascal's triangle based on A092287. T(n,k) = A092287(n)/(A092287(n-k)*A092287(k)), 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 16, 24, 16, 1, 1, 5, 40, 40, 5, 1, 1, 864, 2160, 11520, 2160, 864, 1, 1, 7, 3024, 5040, 5040, 3024, 7, 1, 1, 2048, 7168, 2064384, 645120, 2064384, 7168, 2048, 1, 1, 729, 746496, 1741824, 94058496, 94058496, 1741824, 746496, 729, 1
Offset: 0

Views

Author

Peter Bala, Apr 16 2007

Keywords

Comments

It appears that the T(n,k) are always integers. This would follow from the conjectured prime factorization given in A092287. Calculation suggests that the binomial coefficients C(n,k) divide T(n,k) and indeed that T(n,k)/C(n,k) are perfect squares.

Examples

			Triangle starts:
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3,  1;
  1, 16, 24, 16,  1;
  1,  5, 40, 40,  5,  1;
		

Crossrefs

Programs

Formula

T(n, k) = (Product_{i=1..n} Product_{j=1..n} gcd(i,j)) / ( (Product_{i=1..n-k} Product_{j=1..n-k} gcd(i,j)) * ( Product_{i=1..k} Product_{j=1..k} gcd(i,j)) ), note that empty products equal to 1.
T(n, n-k) = T(n, k). - G. C. Greubel, Feb 07 2024

A051190 a(n) = Product_{k=1..n-1} gcd(k,n).

Original entry on oeis.org

1, 1, 1, 2, 1, 12, 1, 16, 9, 80, 1, 3456, 1, 448, 2025, 2048, 1, 186624, 1, 1024000, 35721, 11264, 1, 573308928, 625, 53248, 59049, 179830784, 1, 1007769600000, 1, 67108864, 7144929, 1114112, 37515625, 160489808068608, 1, 4980736, 89813529
Offset: 1

Views

Author

Antti Karttunen, Oct 21 1999

Keywords

Comments

a(n) > 1 if and only if n is composite. - Charles R Greathouse IV, Jan 04 2013

Crossrefs

Programs

  • Haskell
    a051190 n = product $ map (gcd n) [1..n-1]
    -- Reinhard Zumkeller, Nov 22 2011
    
  • Maple
    A051190 := proc(n) local i; mul(igcd(n, i ), i = 1..(n-1)) end;
  • Mathematica
    a[n_] := If[PrimeQ[n], 1, Times @@ (GCD[n, #]& /@ Range[n-1])]; Table[a[n], {n, 1, 39}]  (* Jean-François Alcover, Jul 18 2012 *)
    Table[Times @@ GCD[n, Range[n-1]], {n, 50}] (* T. D. Noe, Apr 12 2013 *)
    Table[Product[GCD[k,n],{k,n-1}],{n,50}] (* Harvey P. Dale, Jan 29 2025 *)
  • PARI
    a(n)=my(f=factor(n)); prod(i=1, #f[,1], prod(j=1, f[i,2], f[i,1]^(n\f[i,1]^j)))/n \\ Charles R Greathouse IV, Jan 04 2013
    
  • PARI
    a(n) = prod(k=1,n-1,gcd(k,n)); /* Joerg Arndt, Apr 14 2013 */
    
  • Sage
    A051190 = lambda n: mul(gcd(n,i) for i in (1..n-1))
    [A051190(n) for n in (1..39)] # Peter Luschny, Apr 07 2013
    
  • Sage
    # A second, faster version, based on the prime factorization of a(n):
    def A051190(n):
        R = 1
        if not is_prime(n) :
            for p in primes(n//2+1):
                s = 0; r = n; t = n-1
                while r > 0 :
                    r = r//p; t = t//p
                    s += (r-t)*(r+t-1)
                R *= p^(s/2)
        return R
    [A051190(i) for i in (1..1000)]  # Peter Luschny, Apr 08 2013

Formula

a(n) = Product_{ d divides n, d < n } d^phi(n/d). - Peter Luschny, Apr 07 2013
a(n) = A067911(n) / n. - Peter Luschny, Apr 07 2013
Product_{j=1..n} Product_{k=1..j-1} gcd(j,k), n >= 1. - Daniel Forgues, Apr 11 2013
a(n) = sqrt( (1/n) * (A092287(n) / A092287(n-1)) ). - Daniel Forgues, Apr 13 2013

A129454 a(n) = Product{i=1..n-1} Product{j=1..n-1} Product{k=1..n-1} gcd(i,j,k).

Original entry on oeis.org

1, 1, 1, 2, 6, 1536, 7680, 8806025134080, 61642175938560, 2168841254587541957294161920, 7562281854741110985626291951024209920, 1362299589723309231779453337910253309054734620740812800000000
Offset: 0

Views

Author

Peter Bala, Apr 16 2007

Keywords

Comments

Conjecture: Let p be a prime and let ordp(n,p) denote the largest power of p which divides n. For example, ordp(48,2)=4 since 48 = 3*(2^4). Then we conjecture that the prime factorization of a(n) is given by ordp(a(n),p)=(floor(n/p))^3 + (floor(n/p^2))^3 + (floor(n/p^3))^3 + . . .. Compare with the comments in A092287.

Crossrefs

Programs

  • Magma
    A129454:= func< n | n le 1 select 1 else (&*[(&*[(&*[GCD(GCD(j,k),m): k in [1..n-1]]): j in [1..n-1]]): m in [1..n-1]]) >;
    [A129454(n): n in [0..20]]; // G. C. Greubel, Feb 07 2024
    
  • Mathematica
    A129454[n_]:= Product[GCD[j,k,m], {j,n-1}, {k,n-1}, {m,n-1}];
    Table[A129454[n], {n,0,20}] (* G. C. Greubel, Feb 07 2024 *)
  • SageMath
    def A129454(n): return product(product(product(gcd(gcd(j,k),m) for k in range(1,n)) for j in range(1,n)) for m in range(1,n))
    [A129454(n) for n in range(21)] # G. C. Greubel, Feb 07 2024

Formula

a(n) = Product{i=1..n-1} Product{j=1..n-1} Product{k=1..n-1} gcd(i,j,k), for n > 2, otherwise a(n) = 1.

A129455 An analog of Pascal's triangle based on A129454. T(n, k) = A129454(n+1)/(A129454(n-k+1)*A129454(k+1)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 256, 384, 256, 1, 1, 5, 640, 640, 5, 1, 1, 1146617856, 2866544640, 244611809280, 2866544640, 1146617856, 1, 1, 7, 4013162496, 6688604160, 6688604160, 4013162496, 7, 1, 1, 35184372088832, 123145302310912, 47066867504069920948224, 919274755938865643520, 47066867504069920948224, 123145302310912, 35184372088832, 1
Offset: 0

Views

Author

Peter Bala, Apr 16 2007

Keywords

Comments

It appears that the T(n,k) are always integers. This would follow from the conjectured prime factorization given in A129454. Calculation suggests that the binomial coefficients C(n,k) divide T(n,k) and that T(n,k)/C(n,k) are perfect sixth powers.

Examples

			Triangle starts:
  1;
  1,   1;
  1,   2,   1;
  1,   3,   3,   1;
  1, 256, 384, 256,  1;
  1,   5, 640, 640,  5,  1;
		

Crossrefs

Programs

Formula

T(n, k) = Product_{h=1..n} Product_{i=1..n} Product_{j=1..n} gcd(h,i,j)/( (Product_{h=1..n-k} Product_{i=1..n-k} Product_{j=1..n-k} gcd(h,i,j))*(Product_{h=1..k} Product_{i=1..k} Product_{j=1..k} gcd(h,i,j)) ).
T(n, n-k) = T(n, k). - G. C. Greubel, Feb 07 2024

A224479 a(n) = Product_{k=1..n} Product_{i=1..k-1} gcd(k,i).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 24, 24, 384, 3456, 276480, 276480, 955514880, 955514880, 428070666240, 866843099136000, 1775294667030528000, 1775294667030528000, 331312591939905257472000, 331312591939905257472000, 339264094146462983651328000000
Offset: 0

Views

Author

Peter Luschny, Apr 07 2013

Keywords

Comments

The order of the primes in the prime factorization of a(n) is given by
ord_{p}(a(n)) = (1/2)*Sum_{i>=1} floor(n/p^i)*(floor(n/p^i)-1).
Product of all entries of lower-left (excluding main diagonal) triangular submatrix of GCDs. Also the product of all entries of upper-right (excluding main diagonal) triangular submatrix of GCDs, since the matrix is symmetric. - Daniel Forgues, Apr 14 2013
a(n)^2 * n! gives A092287(n), where n! is the product of the main diagonal entries of the matrix. - Daniel Forgues, Apr 14 2013

Crossrefs

Programs

  • Maple
    A224479 := proc(n) local h, k, d;
    mul(mul(d^phi(k/d), d = divisors(k) minus {k}), k = 1..n) end:
    seq(A224479(i), i = 0..20);
  • Mathematica
    a[n_] := Product[ d^EulerPhi[k/d], {k, 1, n}, {d, Divisors[k] // Most}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 27 2013, after Maple *)
  • PARI
    a(n)=prod(k=1,n,my(s=1);fordiv(k,d,dCharles R Greathouse IV, Jun 27 2013
  • Sage
    def A224479(n):
        R = 1;
        for p in primes(n):
            s = 0; r = n
            while r > 0 :
                r = r//p
                s += r*(r-1)
            R *= p^(s/2)
        return R
    [A224479(i) for i in (0..20)]
    

Formula

a(n) = Product_{k=1..n} Product_{d divides k, d < k} d^phi(k/d).
n! * a(n)^2 = A092287(n).
a(n)/a(n-1) = A051190(n) for n >= 1.
a(n) = sqrt(A092287(n) / n!). - Daniel Forgues, Apr 14 2013

A129364 a(n) = Product_{k = 1..n} A066841(k).

Original entry on oeis.org

1, 2, 6, 96, 480, 207360, 1451520, 2972712960, 722369249280, 5778953994240000, 63568493936640000, 9111096278347394580480000, 118444251618516129546240000, 10400352846118664303196241920000
Offset: 1

Views

Author

Peter Bala, Apr 11 2007

Keywords

Comments

Conjecture: a(n) divides A092287(n) for all n - see comments in A129365.

Crossrefs

Programs

  • Mathematica
    Table[Product[Floor[n/k]!^k, {k, 1, n}], {n, 1, 15}] (* Vaclav Kotesovec, Jun 24 2021 *)
    Table[Product[k^(Floor[n/k]*(1 + Floor[n/k])/2), {k, 1, n}], {n, 1, 15}] (* Vaclav Kotesovec, Jun 24 2021 *)
  • PARI
    a(n) = prod(k=1, n, k^((n\k) * (1 + n\k) \ 2)); \\ Daniel Suteu, Sep 12 2018

Formula

a(n) = Product_{k = 1..n} Product_{d|k} d^(k/d).
a(n) = Product_{k = 1..n} ((floor(n/k))!)^k.
a(n) = exp(Sum_{k = 1..n} log(k)/2 * floor(n/k) * floor(1 + n/k)). - Daniel Suteu, Sep 12 2018
log(a(n)) ~ c * n^2, where c = -zeta'(2)/2 = A073002/2 = 0.468774... - Vaclav Kotesovec, Jun 24 2021

A224497 a(n) = sqrt(floor(n/2)! * Product_{k=1..n} Product_{i=1..k-1} gcd(k,i)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 12, 12, 96, 288, 5760, 5760, 829440, 829440, 46448640, 2090188800, 267544166400, 267544166400, 346737239654400, 346737239654400, 1109559166894080000, 209706682542981120000, 73816752255129354240000, 73816752255129354240000
Offset: 0

Views

Author

Peter Luschny, Apr 08 2013

Keywords

Comments

The order of the primes in the prime factorization of a(n) is given by
ord_{p}(a(n)) = (1/4)*Sum_{i>=1} floor(n/p^i)*(floor(n/p^i)-1) + (1/2)*Sum_{i>=1} floor(floor(n/2)/p^i).
For n > 1: a(n) = a(n-1) if and only if n is prime.

Crossrefs

Cf. A224479.

Programs

  • Maple
    A224497 := n -> sqrt(iquo(n,2)!*mul(mul(igcd(k,i), i=1..k-1), k=1..n)):
    seq(A224497(i), i = 0..23);
  • Sage
    def A224497(n):
        R = 1;
        for p in primes(n):
            s = 0; t = 0
            r = n; u = n//2
            while r > 0 :
                r = r//p; u = u//p
                t += u; s += r*(r-1)
            R *= p^((t+s/2)/2)
        return R
    [A224497(i) for i in (0..23)]

Formula

a(n) = sqrt(floor(n/2)! * A224479(n)).
A092287(n) = A056040(n) * a(n)^4.

A090494 Product_{j=1..n} Product_{k=1..n} lcm(j,k).

Original entry on oeis.org

1, 1, 8, 7776, 1146617856, 1289945088000000000, 46798828032806092800000000000, 2350577043461005964030008507760640000000000000, 8206262459636402163263383676462776103575725539328000000000000000, 2746781358330240881921653545637784861521126603512175621574459373964492800000000000000000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2004

Keywords

Crossrefs

Programs

  • Maple
    f := n->mul(mul(lcm(j,k),k=1..n),j=1..n);

Formula

Let p be a prime and let ordp(n,p) denote the exponent of the largest power of p which divides n. For example, ordp(48,2)=4 since 48 = 3*(2^4). Then the prime factorization of a(n) appears to be given by the formula ordp(a(n),p)= sum_{k >= 1} [(2*(p^k)-1)*floor((n/(p^k)))^2] + 2*sum_{k >= 1} [floor(n/(p^k))*mod(n,p^k)], for each prime p. See the comments sections of A092143, A092287, A129365 and A129454 for similar conjectural prime factorizations. - Peter Bala, Apr 23 2007

A276162 Square array read by antidiagonals: T(n,k) = Product_{i = 1..k} gcd(n, i).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 4, 1, 1, 1, 2, 3, 4, 1, 1, 2, 1, 8, 3, 8, 1, 1, 1, 6, 1, 8, 9, 8, 1, 1, 2, 1, 12, 5, 16, 9, 16, 1, 1, 1, 2, 1, 12, 5, 16, 9, 16, 1, 1, 2, 3, 8, 1, 72, 5, 64, 27, 32, 1, 1, 1, 2, 3, 8, 1, 72, 5, 64, 27, 32, 1, 1, 2, 1, 4
Offset: 1

Views

Author

Peter Kagey, Aug 22 2016

Keywords

Examples

			T(6, 3) = gcd(6, 1) * gcd(6, 2) * gcd(6, 3) = 6.
		

Crossrefs

Programs

  • Haskell
    a276162T n k = product $ map (gcd n) [1..k]
    -- Peter Kagey, Aug 23 2016
  • PARI
    T(n,k)=prod(i=2,k,gcd(n,i))
    for(s=1,15,for(k=1,s-1, print1(T(s-k,k)", "))) \\ Charles R Greathouse IV, Aug 22 2016
    
Showing 1-10 of 10 results.