A129455 An analog of Pascal's triangle based on A129454. T(n, k) = A129454(n+1)/(A129454(n-k+1)*A129454(k+1)).
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 256, 384, 256, 1, 1, 5, 640, 640, 5, 1, 1, 1146617856, 2866544640, 244611809280, 2866544640, 1146617856, 1, 1, 7, 4013162496, 6688604160, 6688604160, 4013162496, 7, 1, 1, 35184372088832, 123145302310912, 47066867504069920948224, 919274755938865643520, 47066867504069920948224, 123145302310912, 35184372088832, 1
Offset: 0
Examples
Triangle starts: 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 256, 384, 256, 1; 1, 5, 640, 640, 5, 1;
Links
- G. C. Greubel, Rows n = 0..25 of the triangle, flattened
Programs
-
Magma
A129454:= func< n | n le 1 select 1 else (&*[(&*[(&*[GCD(GCD(j,k),m): k in [1..n-1]]): j in [1..n-1]]): m in [1..n-1]]) >; A129455:= func< n,k | A129454(n+1)/(A129454(n-k+1)*A129454(k+1)) >; [A129455(n,k): k in [0..n], n in [0..9]]; // G. C. Greubel, Feb 07 2024
-
Mathematica
A129454[n_]:= Product[GCD[j,k,m], {j,n-1}, {k,n-1}, {m,n-1}]; A129455[n_, k_]:= A129454[n+1]/(A129454[k+1]*A129454[n-k+1]); Table[A129455[n,k], {n,0,9}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 07 2024 *)
-
SageMath
def A129454(n): return product(product(product(gcd(gcd(j,k),m) for k in range(1,n)) for j in range(1,n)) for m in range(1,n)) def A129455(n,k): return A129454(n+1)/(A129454(n-k+1)*A129454(k+1)) flatten([[A129455(n,k) for k in range(n+1)] for n in range(10)]) # G. C. Greubel, Feb 07 2024
Formula
T(n, k) = Product_{h=1..n} Product_{i=1..n} Product_{j=1..n} gcd(h,i,j)/( (Product_{h=1..n-k} Product_{i=1..n-k} Product_{j=1..n-k} gcd(h,i,j))*(Product_{h=1..k} Product_{i=1..k} Product_{j=1..k} gcd(h,i,j)) ).
T(n, n-k) = T(n, k). - G. C. Greubel, Feb 07 2024
Comments