A092287 a(n) = Product_{j=1..n} Product_{k=1..n} gcd(j,k).
1, 1, 2, 6, 96, 480, 414720, 2903040, 5945425920, 4334215495680, 277389791723520000, 3051287708958720000, 437332621360674939863040000, 5685324077688774218219520000, 15974941971638268369709427589120000, 982608696336737613503095822614528000000000
Offset: 0
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 0..67
Crossrefs
Programs
-
Magma
[n eq 0 select 1 else (&*[(&*[GCD(j,k): k in [1..n]]): j in [1..n]]): n in [0..30]]; // G. C. Greubel, Feb 07 2024
-
Maple
f := n->mul(mul(igcd(j,k),k=1..n),j=1..n);
-
Mathematica
a[0] = 1; a[n_] := a[n] = n*Product[GCD[k, n], {k, 1, n-1}]^2*a[n-1]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 16 2013, after Daniel Forgues *)
-
PARI
h(n,p)=if(n
-
Sage
def A092287(n): R = 1 for p in primes(n+1) : s = 0; r = n while r > 0 : r = r//p s += r*r R *= p^s return R [A092287(i) for i in (0..15)] # Peter Luschny, Apr 10 2013
Formula
Also a(n) = Product_{k=1..n} Product_{j=1..n} lcm(1..floor(min(n/k, n/j))).
From Daniel Forgues, Apr 08 2013: (Start)
Recurrence: a(0) := 1; for n > 0: a(n) := n * (Product_{j=1..n-1} gcd(n,j))^2 * a(n-1) = n * A051190(n)^2 * a(n-1).
Formula for n >= 0: a(n) = n! * (Product_{j=1..n} Product_{k=1..j-1} gcd(j,k))^2. (End)
a(n) = n! * A224479(n)^2 (the last formula above).
Extensions
Recurrence formula corrected by Daniel Forgues, Apr 07 2013
Comments