cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A092287 a(n) = Product_{j=1..n} Product_{k=1..n} gcd(j,k).

Original entry on oeis.org

1, 1, 2, 6, 96, 480, 414720, 2903040, 5945425920, 4334215495680, 277389791723520000, 3051287708958720000, 437332621360674939863040000, 5685324077688774218219520000, 15974941971638268369709427589120000, 982608696336737613503095822614528000000000
Offset: 0

Views

Author

N. J. A. Sloane, based on a suggestion from Leroy Quet, Feb 03 2004

Keywords

Comments

Conjecture: Let p be a prime and let ordp(n,p) denote the exponent of the highest power of p that divides n. For example, ordp(48,2)=4, since 48=3*(2^4). Then we conjecture that the prime factorization of a(n) is given by the formula: ordp(a(n),p) = (floor(n/p))^2 + (floor(n/p^2))^2 + (floor(n/p^3))^2 + .... Compare this to the de Polignac-Legendre formula for the prime factorization of n!: ordp(n!,p) = floor(n/p) + floor(n/p^2) + floor(n/p^3) + .... This suggests that a(n) can be considered as generalization of n!. See A129453 for the analog for a(n) of Pascal's triangle. See A129454 for the sequence defined as a triple product of gcd(i,j,k). - Peter Bala, Apr 16 2007
The conjecture is correct. - Charles R Greathouse IV, Apr 02 2013
a(n)/a(n-1) = n, n >= 1, if and only if n is noncomposite, otherwise a(n)/a(n-1) = n * f^2, f > 1. - Daniel Forgues, Apr 07 2013
Conjecture: For a product over a rectangle, f(n,m) = Product_{j=1..n} Product_{k=1..m} gcd(j,k), a factorization similar to the one given above for the square case takes place: ordp(f(n,m),p) = floor(n/p)*floor(m/p) + floor(n/p^2)*floor(m/p^2) + .... By way of directly computing the values of f(n,m), it can be verified that the conjecture holds at least for all 1 <= m <= n <= 200. - Andrey Kaydalov, Mar 11 2019

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else (&*[(&*[GCD(j,k): k in [1..n]]): j in [1..n]]): n in [0..30]]; // G. C. Greubel, Feb 07 2024
  • Maple
    f := n->mul(mul(igcd(j,k),k=1..n),j=1..n);
  • Mathematica
    a[0] = 1; a[n_] := a[n] = n*Product[GCD[k, n], {k, 1, n-1}]^2*a[n-1]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 16 2013, after Daniel Forgues *)
  • PARI
    h(n,p)=if(nCharles R Greathouse IV, Apr 02 2013
    
  • Sage
    def A092287(n):
        R = 1
        for p in primes(n+1) :
            s = 0; r = n
            while r > 0 :
                r = r//p
                s += r*r
            R *= p^s
        return R
    [A092287(i) for i in (0..15)]  # Peter Luschny, Apr 10 2013
    

Formula

Also a(n) = Product_{k=1..n} Product_{j=1..n} lcm(1..floor(min(n/k, n/j))).
From Daniel Forgues, Apr 08 2013: (Start)
Recurrence: a(0) := 1; for n > 0: a(n) := n * (Product_{j=1..n-1} gcd(n,j))^2 * a(n-1) = n * A051190(n)^2 * a(n-1).
Formula for n >= 0: a(n) = n! * (Product_{j=1..n} Product_{k=1..j-1} gcd(j,k))^2. (End)
a(n) = n! * A224479(n)^2 (the last formula above).
a(n) = n$ * A224497(n)^4, n$ the swinging factorial A056040(n). - Peter Luschny, Apr 10 2013

Extensions

Recurrence formula corrected by Daniel Forgues, Apr 07 2013

A067911 Product of gcd(k,n) for 1 <= k <= n.

Original entry on oeis.org

1, 2, 3, 8, 5, 72, 7, 128, 81, 800, 11, 41472, 13, 6272, 30375, 32768, 17, 3359232, 19, 20480000, 750141, 247808, 23, 13759414272, 15625, 1384448, 1594323, 5035261952, 29, 30233088000000, 31, 2147483648, 235782657, 37879808
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), Mar 10 2002

Keywords

Crossrefs

In A018804 the product is replaced by sum.
Product of terms in n-th row of A050873.
Cf. A000010 (comments on product formulas).

Programs

  • Maple
    with(numtheory): a := n -> mul(d^phi(n/d), d = divisors(n)):
    seq(a(i), i = 1..34); # Peter Luschny, Apr 07 2013
  • Mathematica
    a[n_] := Product[d^EulerPhi[n/d], {d, Divisors[n]}];
    Array[a, 34] (* Jean-François Alcover, Jun 03 2019 *)
  • PARI
    a(n) = prod(k=1, n, gcd(k, n)); \\ Michel Marcus, Aug 23 2016
  • Sage
    A067911 = lambda n: mul(gcd(n,i) for i in range(n))
    [A067911(n) for n in (1..34)] # Peter Luschny, Apr 07 2013
    

Formula

a(n) = Product_{d|n} d^phi(n/d). - Vladeta Jovovic, Mar 08 2004
a(n) = n*A051190(n). - Peter Luschny, Apr 07 2013
a(n) = Product_{k=1..n} (n/gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))) where phi = A000010. - Richard L. Ollerton, Nov 07 2021

Extensions

Extended and edited by John W. Layman, Mar 14 2002

A224479 a(n) = Product_{k=1..n} Product_{i=1..k-1} gcd(k,i).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 24, 24, 384, 3456, 276480, 276480, 955514880, 955514880, 428070666240, 866843099136000, 1775294667030528000, 1775294667030528000, 331312591939905257472000, 331312591939905257472000, 339264094146462983651328000000
Offset: 0

Views

Author

Peter Luschny, Apr 07 2013

Keywords

Comments

The order of the primes in the prime factorization of a(n) is given by
ord_{p}(a(n)) = (1/2)*Sum_{i>=1} floor(n/p^i)*(floor(n/p^i)-1).
Product of all entries of lower-left (excluding main diagonal) triangular submatrix of GCDs. Also the product of all entries of upper-right (excluding main diagonal) triangular submatrix of GCDs, since the matrix is symmetric. - Daniel Forgues, Apr 14 2013
a(n)^2 * n! gives A092287(n), where n! is the product of the main diagonal entries of the matrix. - Daniel Forgues, Apr 14 2013

Crossrefs

Programs

  • Maple
    A224479 := proc(n) local h, k, d;
    mul(mul(d^phi(k/d), d = divisors(k) minus {k}), k = 1..n) end:
    seq(A224479(i), i = 0..20);
  • Mathematica
    a[n_] := Product[ d^EulerPhi[k/d], {k, 1, n}, {d, Divisors[k] // Most}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 27 2013, after Maple *)
  • PARI
    a(n)=prod(k=1,n,my(s=1);fordiv(k,d,dCharles R Greathouse IV, Jun 27 2013
  • Sage
    def A224479(n):
        R = 1;
        for p in primes(n):
            s = 0; r = n
            while r > 0 :
                r = r//p
                s += r*(r-1)
            R *= p^(s/2)
        return R
    [A224479(i) for i in (0..20)]
    

Formula

a(n) = Product_{k=1..n} Product_{d divides k, d < k} d^phi(k/d).
n! * a(n)^2 = A092287(n).
a(n)/a(n-1) = A051190(n) for n >= 1.
a(n) = sqrt(A092287(n) / n!). - Daniel Forgues, Apr 14 2013

A082022 In the following square array a(i,j) = Least Common Multiple of i and j. Sequence contains the product of the terms of the n-th antidiagonal.

Original entry on oeis.org

1, 4, 18, 576, 1200, 518400, 1587600, 180633600, 1646023680, 13168189440000, 461039040000, 229442532802560000, 86553098311680000, 3753113311877529600, 834966920275488000000
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2003

Keywords

Comments

If n is even and n+1 is prime, a(n) = n^2 * (n-1)!^2. If n is odd and >3, 2*(n+1)*a(n) is a perfect square, the root of which has the factor 1/2*n*(n-1)*((n-1)/2)!. This was proved by Lawrence Sze. - Ralf Stephan, Nov 16 2004

Examples

			1 2 3 4 5...
2 2 6 4 10...
3 6 3 12 15...
4 4 12 4 20...
5 10 15 20 5...
...
The same array in triangular form is
1
2 2
3 2 3
4 6 6 4
5 4 3 4 5
...
Sequence contains the product of the terms of the n-th row.
		

Crossrefs

Equals A001044(n) / A051190(n+1).

Programs

  • PARI
    for(n=1,20,p=1:for(k=1,n,p=p*lcm(k,n+1-k)):print1(p","))

Formula

Prod(k=1...n, lcm(k, n+1-k)).

Extensions

Corrected and extended by Ralf Stephan, Apr 08 2003

A276162 Square array read by antidiagonals: T(n,k) = Product_{i = 1..k} gcd(n, i).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 4, 1, 1, 1, 2, 3, 4, 1, 1, 2, 1, 8, 3, 8, 1, 1, 1, 6, 1, 8, 9, 8, 1, 1, 2, 1, 12, 5, 16, 9, 16, 1, 1, 1, 2, 1, 12, 5, 16, 9, 16, 1, 1, 2, 3, 8, 1, 72, 5, 64, 27, 32, 1, 1, 1, 2, 3, 8, 1, 72, 5, 64, 27, 32, 1, 1, 2, 1, 4
Offset: 1

Views

Author

Peter Kagey, Aug 22 2016

Keywords

Examples

			T(6, 3) = gcd(6, 1) * gcd(6, 2) * gcd(6, 3) = 6.
		

Crossrefs

Programs

  • Haskell
    a276162T n k = product $ map (gcd n) [1..k]
    -- Peter Kagey, Aug 23 2016
  • PARI
    T(n,k)=prod(i=2,k,gcd(n,i))
    for(s=1,15,for(k=1,s-1, print1(T(s-k,k)", "))) \\ Charles R Greathouse IV, Aug 22 2016
    

A349741 a(n) = Product_{k=1..n-1} phi(gcd(n,k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 4, 4, 1, 32, 1, 6, 256, 16, 1, 96, 1, 1024, 2304, 10, 1, 16384, 256, 12, 2304, 13824, 1, 524288, 1, 2048, 102400, 16, 5308416, 14155776, 1, 18, 589824, 134217728, 1, 63700992, 1, 1024000, 86973087744, 22, 1, 8589934592, 46656, 1310720
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 28 2021

Keywords

Crossrefs

Cf. A000010, A001088, A029935, A029940, A046022 (positions of 1's), A051190.

Programs

  • Mathematica
    Table[Product[EulerPhi[GCD[n, k]], {k, 1, n - 1}], {n, 1, 50}]
  • PARI
    a(n) = prod(k=1, n-1, eulerphi(gcd(n, k))); \\ Michel Marcus, Nov 28 2021

Formula

a(n) = Product_{d|n, d < n} phi(d)^phi(n/d).

A308944 a(n) = Product_{k=1..n} lcm(n,k) / (k * gcd(n,k)).

Original entry on oeis.org

1, 1, 3, 4, 125, 9, 16807, 1024, 59049, 15625, 2357947691, 5184, 1792160394037, 282475249, 474609375, 17179869184, 2862423051509815793, 3486784401, 5480386857784802185939, 250000000000, 10382917022245341, 5559917313492231481, 39471584120695485887249589623
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[LCM[n, k]/(k GCD[n, k]), {k, 1, n}], {n, 1, 23}]
    Table[Product[d^(EulerPhi[d] - EulerPhi[n/d]), {d, Divisors[n]}], {n, 1, 23}]
  • PARI
    a(n) = prod(k=1, n, lcm(n, k)/(k*gcd(n, k))); \\ Michel Marcus, Jul 02 2019

Formula

a(n) = Product_{d|n} d^(phi(d)-phi(n/d)).
a(n) = n^n / Product_{d|n} d^(2*phi(n/d)).
a(n) = n^(-n) * Product_{d|n} d^(2*phi(d)).
a(n) = n^n / Product_{k=1..n} gcd(n,k)^2.
a(n) = n^(-n) * Product_{k=1..n} lcm(n,k)^2/k^2.
a(n) = A127553(n)/n!.
a(n) = A056916(n)/A067911(n).
a(p) = p^(p-2), where p is a prime.

A349785 a(n) = 1 + Product_{k=1..n-1} a(gcd(n,k)).

Original entry on oeis.org

2, 3, 5, 13, 17, 181, 65, 1873, 1601, 22033, 1025, 110120401, 4097, 3032641, 46240001, 6563711233, 65537, 61178101070401, 262145, 3771115818193153, 270400000001, 61977830401, 4194305, 27719934186822773256934560001, 87578116097, 8918277230593, 10498871296000001
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 30 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Product[a[GCD[n, k]], {k, 1, n - 1}]; Table[a[n], {n, 1, 27}]

Formula

a(n) = 1 + Product_{d|n, d < n} a(d)^phi(n/d).
Showing 1-8 of 8 results.