cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A010786 Floor-factorial numbers: a(n) = Product_{k=1..n} floor(n/k).

Original entry on oeis.org

1, 1, 2, 3, 8, 10, 36, 42, 128, 216, 600, 660, 3456, 3744, 9408, 18900, 61440, 65280, 279936, 295488, 1152000, 2116800, 4878720, 5100480, 31850496, 41472000, 93450240, 163762560, 568995840, 589317120, 3265920000, 3374784000, 11324620800, 19269550080, 42188636160
Offset: 0

Views

Author

Keywords

Comments

Product floor(n/1)*floor(n/2)*floor(n/3)*...*floor(n/n).
a(n) is the number of functions f:[n]->[n] where f(x) is a multiple of x for all x in [n]. We note that there are floor[n/x] possible choices for each image of x under f. [Dennis P. Walsh, Nov 06 2014]

Examples

			For n=4 the a(4)=8 functions are given by the image sequences <1,2,3,4>, <1,4,3,4>, <2,2,3,4>, <2,4,3,4>, <3,2,3,4>, <3,4,3,4>, <4,2,3,4>, and <4,4,3,4>. [_Dennis P. Walsh_, Nov 06 2014]
		

Crossrefs

Programs

  • Haskell
    a010786 n = product $ map (div n) [1..n]
    -- Reinhard Zumkeller, Feb 26 2012
    
  • Magma
    [&*[n div i: i in [1..n]]: n in [1..35]]; // Vincenzo Librandi, Oct 03 2018
  • Maple
    a := n -> mul( floor(n/k), k=1..n);
  • Mathematica
    Table[Product[Floor[n/k],{k,n}],{n,40}] (* Harvey P. Dale, May 09 2017 *)
  • PARI
    vector(50, n, prod(k=1, n, n\k)) \\ Michel Marcus, Nov 10 2014
    

Formula

a(n+1) = a(n)*A208449(n)/A208450(n). - Reinhard Zumkeller, Feb 26 2012
GCD(a(n), a(n+1)) = A208448(n). - Reinhard Zumkeller, Feb 26 2012
From Vaclav Kotesovec, Oct 03 2018: (Start)
log(a(n)) ~ c * (n - log(2*Pi*n)/2), where c = 0.7885...
Conjecture: c = A085361. (End)
From Ridouane Oudra, Jan 18 2025: (Start)
a(n) = Product_{k=1..n} ((k+1)/k)^floor(n/(k+1)).
a(n) = Product_{k=1..n} k^A075993(n, k).
a(n) = A092143(n)/f(n), where f(n) = Product_{k=1..n} ((floor(n/k)-1)!).
a(n) = A092143(n)/g(n), where g(n) = Product_{k=1..n} A377484(k).
a(n)/a(n-1) = A007955(n)/A377484(n). (End)

Extensions

More terms from Hieronymus Fischer, Jul 08 2007
Edited by N. J. A. Sloane, Jul 05 2008 at the suggestion of Rick L. Shepherd
a(0)=1 prepended by Alois P. Heinz, Oct 30 2023

A131385 Product ceiling(n/1)*ceiling(n/2)*ceiling(n/3)*...*ceiling(n/n) (the 'ceiling factorial').

Original entry on oeis.org

1, 1, 2, 6, 16, 60, 144, 672, 1536, 6480, 19200, 76032, 165888, 1048320, 2257920, 8294400, 28311552, 126904320, 268738560, 1470873600, 3096576000, 16094453760, 51385466880, 175814737920, 366917713920, 2717245440000, 6782244618240, 22754631352320, 69918208819200
Offset: 0

Views

Author

Hieronymus Fischer, Jul 08 2007

Keywords

Comments

From R. J. Mathar, Dec 05 2012: (Start)
a(n) = b(n-1) because a(n) = Product_{k=1..n} ceiling(n/k) = Product_{k=1..n-1} ceiling(n/k) = n*Product_{k=2..n-1} ceiling(n/k) = Product_{k=1..1} (1+(n-1)/k)*Product_{k=2..n-1} ceiling(n/k).
The cases of the product are (i) k divides n but does not divide n-1, ceiling(n/k) = n/k = 1 + floor((n-1)/k), (ii) k does not divide n but divides n-1, ceiling(n/k) = 1 + (n-1)/k = 1 + floor((n-1)/k) and (iii) k divides neither n nor n-1, ceiling(n/k) = 1 + floor((n-1)/k).
In all cases, including k=1, a(n) = Product_{k=1..n-1} (1+floor((n-1)/k)) = Product_{k=1..n-1} floor(1+(n-1)/k) = b(n-1).
(End)
a(n) is the number of functions f:D->{1,2,..,n-1} where D is any subset of {1,2,..,n-1} and where f(x) == 0 (mod x) for every x in D. - Dennis P. Walsh, Nov 13 2015

Examples

			From _Paul D. Hanna_, Nov 26 2012: (Start)
Illustrate initial terms using formula involving the floor function []:
  a(1) = 1;
  a(2) = [2/1] = 2;
  a(3) = [3/1]*[4/2] = 6;
  a(4) = [4/1]*[5/2]*[6/3] = 16;
  a(5) = [5/1]*[5/2]*[7/3]*[8/4] = 60;
  a(6) = [6/1]*[7/2]*[8/3]*[9/4]*[10/5] = 144.
Illustrate another alternative generating method:
  a(1) = 1;
  a(2) = (2/1)^[1/1] = 2;
  a(3) = (2/1)^[2/1] * (3/2)^[2/2] = 6;
  a(4) = (2/1)^[3/1] * (3/2)^[3/2] * (4/3)^[3/3] = 16;
  a(5) = (2/1)^[4/1] * (3/2)^[4/2] * (4/3)^[4/3] * (5/4)^[4/4] = 60.
(End)
For n=3 the a(3)=6 functions f from subsets of {1,2} into {1,2} with f(x) == 0 (mod x) are the following: f=empty set (since null function vacuously holds), f={(1,1)}, f={(1,2)}, f={(2,2)}, f={(1,1),(2,2)}, and f={(1,2),(2,2)}. - _Dennis P. Walsh_, Nov 13 2015
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(ceil(n/k), k=1..n):
    seq(a(n), n=0..40); # Dennis P. Walsh, Nov 13 2015
  • Mathematica
    Table[Product[Ceiling[n/k],{k,n}],{n,25}] (* Harvey P. Dale, Sep 18 2011 *)
  • PARI
    a(n)=prod(k=1,n-1,floor((n+k-1)/k)) \\ Paul D. Hanna, Feb 01 2013
    
  • PARI
    a(n)=prod(k=1,n-1,((k+1)/k)^floor((n-1)/k))
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Feb 01 2013

Formula

a(n) = Product_{k=1..n} ceiling(n/k).
Formulas from Paul D. Hanna, Nov 26 2012: (Start)
a(n) = Product_{k=1..n-1} floor((n+k-1)/k) for n>1.
a(n) = Product_{k=1..n-1} ((k+1)/k)^floor((n-1)/k) for n>1.
Limits: Let L = limit a(n+1)/a(n) = 3.51748725590236964939979369932386417..., then
(1) L = exp( Sum_{n>=1} log((n+1)/n) / n ) ;
(2) L = 2 * exp( Sum_{n>=1} (-1)^(n+1) * Sum_{k>=2} 1/(n*k^(n+1)) ) ;
(4) L = exp( Sum_{n>=1} (-1)^(n+1) * zeta(n+1)/n ) ;
(5) L = exp( Sum_{n>=1} log(n+1) / (n*(n+1)) ) = exp(c) where c = constant A131688.
Compare L to Alladi-Grinstead constant defined by A085291 and A085361.
(End)
a(n) = A308820(n)/A092143(n-1) for n > 0. - Ridouane Oudra, Sep 28 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 30 2023

A207643 a(n) = 1 + (n-1) + (n-1)*[n/2-1] + (n-1)*[n/2-1]*[n/3-1] + (n-1)*[n/2-1]*[n/3-1]*[n/4-1] +... for n>0 with a(0)=1, where [x] = floor(x).

Original entry on oeis.org

1, 1, 2, 3, 7, 9, 26, 31, 71, 129, 262, 291, 1222, 1333, 2198, 5139, 11881, 12673, 39594, 41923, 117326, 251841, 354292, 371163, 1870453, 2598577, 3456926, 7103955, 16665859, 17283113, 72923314, 75437911, 165990152, 335534913, 422310802, 695765699, 3589651696
Offset: 0

Views

Author

Paul D. Hanna, Feb 19 2012

Keywords

Comments

Radius of convergence of g.f. A(x) is near 0.54783..., with A(1/2) = 7.2672875151872...
Compare the definition of a(n) to the trivial binomial sum:
2^(n-1) = 1 + (n-1) + (n-1)*(n/2-1) + (n-1)*(n/2-1)*(n/3-1) + (n-1)*(n/2-1)*(n/3-1)*(n/4-1) +...

Examples

			a(2) = 1 + 1 = 2; a(3) = 1 + 2 = 3;
a(4) = 1 + 3 + 3*[4/2-1] = 7;
a(5) = 1 + 4 + 4*[5/2-1] = 9;
a(6) = 1 + 5 + 5*[6/2-1] + 5*[6/2-1]*[6/3-1] = 26;
a(7) = 1 + 6 + 6*[7/2-1] + 6*[7/2-1]*[7/3-1] = 31;
a(8) = 1 + 7 + 7*[8/2-1] + 7*[8/2-1]*[8/3-1] + 7*[8/2-1]*[8/3-1]*[8/4-1] = 71; ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1 + Sum[ Product[ Floor[(n-j)/j], {j, 1, k}], {k, 1, n/2}]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {a(n)=1+sum(k=1,n,prod(j=1,k,floor(n/j-1)))}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    a(n)=my(t=1);1+sum(k=1,n,t*=n\k-1) \\ Charles R Greathouse IV, Feb 20 2012

Formula

a(n) = 1 + Sum_{k=1..[n/2]} Product_{j=1..k} floor( (n-j) / j ).
Equals row sums of irregular triangle A207645.

A207644 a(n) = 1 + (n-1) + (n-2)*[(n-3)/2] + (n-3)*[(n-4)/2]*[(n-5)/3] + (n-4)*[(n-5)/2]*[(n-6)/3]*[(n-7)/4] +... where [x] = floor(x), with summation extending over the initial [n/2+1] products only.

Original entry on oeis.org

1, 1, 2, 3, 4, 8, 10, 17, 30, 42, 55, 116, 172, 220, 391, 683, 1024, 1616, 2050, 3675, 6520, 9504, 12505, 22421, 35572, 56918, 85701, 138110, 202765, 326231, 503632, 860497, 1376870, 1927446, 2818531, 4892966, 7784671, 11432772, 17287295, 30423457, 46453786, 71810414
Offset: 0

Views

Author

Paul D. Hanna, Feb 19 2012

Keywords

Comments

Radius of convergence of g.f. A(x) is near 0.637..., with A(1/phi) = 23.059250143... where phi = (sqrt(5)+1)/2.
Compare the definition of a(n) with the binomial sum:
Fibonacci(n) = 1 + (n-1) + (n-2)*((n-3)/2) + (n-3)*((n-4)/2)*((n-5)/3) + (n-4)*((n-5)/2)*((n-6)/3)*((n-7)/4) +...
with summation extending over the initial [n/2+1] products only.

Examples

			a(3) = 1 + 2 = 3;
a(4) = 1 + 3 + 2*[1/2] = 4;
a(5) = 1 + 4 + 3*[2/2] = 8;
a(6) = 1 + 5 + 4*[3/2] + 3*[2/2]*[1/3] = 10;
a(7) = 1 + 6 + 5*[4/2] + 4*[3/2]*[2/3] = 17;
a(8) = 1 + 7 + 6*[5/2] + 5*[4/2]*[3/3] + 4*[3/2]*[2/3]*[1/4] = 30;
a(9) = 1 + 8 + 7*[6/2] + 6*[5/2]*[4/3] + 5*[4/2]*[3/3]*[2/4] = 42; ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1 + Sum[ Product[ Floor[ (n-k-j+1)/j ], {j, 1, k}], {k, 1, n/2}]; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {a(n)=1+sum(k=1,n\2,prod(j=1,k,floor((n-k-j+1)/j)))}
    for(n=0,60,print1(a(n),", "))

Formula

a(n) = 1 + Sum_{k=1..[n/2]} Product_{j=1..k} floor( (n-k-j+1) / j ).
Equals the antidiagonal sums of triangle A207645.

A208060 a(n) = 1 + 2*n + 2^2*n*[n/2] + 2^3*n*[n/2]*[n/3] + 2^4*n*[n/2]*[n/3]*[n/4] + ... where [x]=floor(x).

Original entry on oeis.org

1, 3, 13, 43, 233, 611, 4405, 10515, 64145, 218755, 1215821, 2689083, 28162105, 61179795, 307475813, 1236997051, 8042542625, 17101581699, 146671231501, 309740445795, 2415132010441, 8877053064643, 40919003272005, 85564885298027, 1068638260341937, 2783025471994851
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2012

Keywords

Comments

Compare the definition of a(n) to the exponential series:
exp(2*n) = 1 + 2*n + 2^2*n*(n/2) + 2^3*n*(n/2)*(n/3) + 2^4*n*(n/2)*(n/3)*(n/4) + ...
Conjecture: limit a(n)^(1/n) = 2*L where L = 2.200161058099... is the geometric mean of Luroth expansions, where log(L) = Sum_{n>=1} log(n)/(n*(n+1)) = 0.7885305659115... (cf. A085361).

Examples

			a(5) = 1 + 2*5+ 4*5[5/2] + 8*5[5/2][5/3] + 16*5[5/2][5/3][5/4] + 32*5[5/2][5/3][5/4][5/5] = 1 + 2*5 + 4*5*2 + 8*5*2*1 + 16*5*2*1*1 + 32*5*2*1*1*1 = 611.
		

Crossrefs

Cf. A075885.

Programs

  • PARI
    {a(n)=1+sum(m=1, n, prod(k=1, m, 2*floor(n/k)))}
    
  • PARI
    /* More efficient: variant of a program by Charles R Greathouse IV */
    {a(n)=my(k=1); 1+sum(m=1, n, k*=2*(n\m))}
    for(n=0, 60, print1(a(n), ", "))

Formula

a(n) = 1 + Sum_{m=1..n} Product_{k=1..m} 2^k*floor(n/k).

A331213 a(n) = 1 + Sum_{i=1..n} (-1)^i * Product_{j=1..i} floor(n/j).

Original entry on oeis.org

1, 0, 1, -2, 5, -4, 13, -27, 89, -80, 191, -450, 2365, -1182, 3221, -13034, 40433, -22320, 96373, -193761, 772981, -728930, 1599357, -3428425, 21411337, -13595724, 31407273, -110011850, 377746853, -198079308, 1096983421, -2241234465, 7565512161, -6472208192
Offset: 0

Views

Author

Seiichi Manyama, Jan 12 2020

Keywords

Comments

Compare to the exponential series: exp(-n) = 1 - n + n*(n/2) - n*(n/2)*(n/3) + n*(n/2)*(n/3)*(n/4) - ...

Examples

			a(4) = 1 - 4 + 4*floor(4/2) - 4*floor(4/2)*floor(4/3) + 4*floor(4/2)*floor(4/3)*floor(4/4) = 1 - 4 + 4*2 - 4*2*1 + 4*2*1*1 = 5.
		

Crossrefs

Cf. similar sequences: A075885 (b=1), A208060 (b=2).
Cf. A010786.

Programs

  • Magma
    [1] cat [1+&+[(-1)^i*(&*[Floor(n/j):j in [1..i]]):i in [1..n]]:n in [1..33]]; // Marius A. Burtea, Jan 13 2020
  • Mathematica
    a[n_] := 1 + Sum[(-1)^i * Product[Floor[n/j], {j, 1, i}],{i, 1, n}]; Array[a, 34, 0] (* Amiram Eldar, Jan 13 2020 *)
  • PARI
    {a(n) = 1+sum(i=1, n, (-1)^i*prod(j=1, i, floor(n/j)))}
    

A213907 a(n) = 1 + n + n*{n/2} + n*{n/2}*{n/3} + n*{n/2}*{n/3}*{n/4} +... where {x} = [x+1/2] = round(x).

Original entry on oeis.org

1, 3, 9, 34, 61, 261, 709, 1324, 4937, 15040, 28561, 107262, 248341, 522445, 1972363, 7591936, 8835345, 26421129, 145475533, 183752250, 701184621, 2234736295, 2996725227, 15105451596, 32483720761, 77618520551, 217809217211, 625456400842, 1638545943301
Offset: 0

Views

Author

Paul D. Hanna, Jun 24 2012

Keywords

Examples

			a(2) = 1 + 2 + 2*1 + 2*1*1 + 2*1*1*1 = 9.
a(3) = 1 + 3 + 3*2 + 3*2*1 + 3*2*1*1 + 3*2*1*1*1 + 3*2*1*1*1*1 = 34.
		

Crossrefs

Cf. A075885.

Programs

  • PARI
    {a(n)=1+sum(m=1, 2*n, prod(k=1, m, round(n/k)))}
    for(n=0, 60, print1(a(n), ", "))
Showing 1-7 of 7 results.