A010786
Floor-factorial numbers: a(n) = Product_{k=1..n} floor(n/k).
Original entry on oeis.org
1, 1, 2, 3, 8, 10, 36, 42, 128, 216, 600, 660, 3456, 3744, 9408, 18900, 61440, 65280, 279936, 295488, 1152000, 2116800, 4878720, 5100480, 31850496, 41472000, 93450240, 163762560, 568995840, 589317120, 3265920000, 3374784000, 11324620800, 19269550080, 42188636160
Offset: 0
For n=4 the a(4)=8 functions are given by the image sequences <1,2,3,4>, <1,4,3,4>, <2,2,3,4>, <2,4,3,4>, <3,2,3,4>, <3,4,3,4>, <4,2,3,4>, and <4,4,3,4>. [_Dennis P. Walsh_, Nov 06 2014]
-
a010786 n = product $ map (div n) [1..n]
-- Reinhard Zumkeller, Feb 26 2012
-
[&*[n div i: i in [1..n]]: n in [1..35]]; // Vincenzo Librandi, Oct 03 2018
-
a := n -> mul( floor(n/k), k=1..n);
-
Table[Product[Floor[n/k],{k,n}],{n,40}] (* Harvey P. Dale, May 09 2017 *)
-
vector(50, n, prod(k=1, n, n\k)) \\ Michel Marcus, Nov 10 2014
A131385
Product ceiling(n/1)*ceiling(n/2)*ceiling(n/3)*...*ceiling(n/n) (the 'ceiling factorial').
Original entry on oeis.org
1, 1, 2, 6, 16, 60, 144, 672, 1536, 6480, 19200, 76032, 165888, 1048320, 2257920, 8294400, 28311552, 126904320, 268738560, 1470873600, 3096576000, 16094453760, 51385466880, 175814737920, 366917713920, 2717245440000, 6782244618240, 22754631352320, 69918208819200
Offset: 0
From _Paul D. Hanna_, Nov 26 2012: (Start)
Illustrate initial terms using formula involving the floor function []:
a(1) = 1;
a(2) = [2/1] = 2;
a(3) = [3/1]*[4/2] = 6;
a(4) = [4/1]*[5/2]*[6/3] = 16;
a(5) = [5/1]*[5/2]*[7/3]*[8/4] = 60;
a(6) = [6/1]*[7/2]*[8/3]*[9/4]*[10/5] = 144.
Illustrate another alternative generating method:
a(1) = 1;
a(2) = (2/1)^[1/1] = 2;
a(3) = (2/1)^[2/1] * (3/2)^[2/2] = 6;
a(4) = (2/1)^[3/1] * (3/2)^[3/2] * (4/3)^[3/3] = 16;
a(5) = (2/1)^[4/1] * (3/2)^[4/2] * (4/3)^[4/3] * (5/4)^[4/4] = 60.
(End)
For n=3 the a(3)=6 functions f from subsets of {1,2} into {1,2} with f(x) == 0 (mod x) are the following: f=empty set (since null function vacuously holds), f={(1,1)}, f={(1,2)}, f={(2,2)}, f={(1,1),(2,2)}, and f={(1,2),(2,2)}. - _Dennis P. Walsh_, Nov 13 2015
-
a:= n-> mul(ceil(n/k), k=1..n):
seq(a(n), n=0..40); # Dennis P. Walsh, Nov 13 2015
-
Table[Product[Ceiling[n/k],{k,n}],{n,25}] (* Harvey P. Dale, Sep 18 2011 *)
-
a(n)=prod(k=1,n-1,floor((n+k-1)/k)) \\ Paul D. Hanna, Feb 01 2013
-
a(n)=prod(k=1,n-1,((k+1)/k)^floor((n-1)/k))
for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Feb 01 2013
A207643
a(n) = 1 + (n-1) + (n-1)*[n/2-1] + (n-1)*[n/2-1]*[n/3-1] + (n-1)*[n/2-1]*[n/3-1]*[n/4-1] +... for n>0 with a(0)=1, where [x] = floor(x).
Original entry on oeis.org
1, 1, 2, 3, 7, 9, 26, 31, 71, 129, 262, 291, 1222, 1333, 2198, 5139, 11881, 12673, 39594, 41923, 117326, 251841, 354292, 371163, 1870453, 2598577, 3456926, 7103955, 16665859, 17283113, 72923314, 75437911, 165990152, 335534913, 422310802, 695765699, 3589651696
Offset: 0
a(2) = 1 + 1 = 2; a(3) = 1 + 2 = 3;
a(4) = 1 + 3 + 3*[4/2-1] = 7;
a(5) = 1 + 4 + 4*[5/2-1] = 9;
a(6) = 1 + 5 + 5*[6/2-1] + 5*[6/2-1]*[6/3-1] = 26;
a(7) = 1 + 6 + 6*[7/2-1] + 6*[7/2-1]*[7/3-1] = 31;
a(8) = 1 + 7 + 7*[8/2-1] + 7*[8/2-1]*[8/3-1] + 7*[8/2-1]*[8/3-1]*[8/4-1] = 71; ...
-
a[n_] := 1 + Sum[ Product[ Floor[(n-j)/j], {j, 1, k}], {k, 1, n/2}]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Mar 06 2013 *)
-
{a(n)=1+sum(k=1,n,prod(j=1,k,floor(n/j-1)))}
for(n=0,50,print1(a(n),", "))
-
a(n)=my(t=1);1+sum(k=1,n,t*=n\k-1) \\ Charles R Greathouse IV, Feb 20 2012
A207644
a(n) = 1 + (n-1) + (n-2)*[(n-3)/2] + (n-3)*[(n-4)/2]*[(n-5)/3] + (n-4)*[(n-5)/2]*[(n-6)/3]*[(n-7)/4] +... where [x] = floor(x), with summation extending over the initial [n/2+1] products only.
Original entry on oeis.org
1, 1, 2, 3, 4, 8, 10, 17, 30, 42, 55, 116, 172, 220, 391, 683, 1024, 1616, 2050, 3675, 6520, 9504, 12505, 22421, 35572, 56918, 85701, 138110, 202765, 326231, 503632, 860497, 1376870, 1927446, 2818531, 4892966, 7784671, 11432772, 17287295, 30423457, 46453786, 71810414
Offset: 0
a(3) = 1 + 2 = 3;
a(4) = 1 + 3 + 2*[1/2] = 4;
a(5) = 1 + 4 + 3*[2/2] = 8;
a(6) = 1 + 5 + 4*[3/2] + 3*[2/2]*[1/3] = 10;
a(7) = 1 + 6 + 5*[4/2] + 4*[3/2]*[2/3] = 17;
a(8) = 1 + 7 + 6*[5/2] + 5*[4/2]*[3/3] + 4*[3/2]*[2/3]*[1/4] = 30;
a(9) = 1 + 8 + 7*[6/2] + 6*[5/2]*[4/3] + 5*[4/2]*[3/3]*[2/4] = 42; ...
-
a[n_] := 1 + Sum[ Product[ Floor[ (n-k-j+1)/j ], {j, 1, k}], {k, 1, n/2}]; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Mar 06 2013 *)
-
{a(n)=1+sum(k=1,n\2,prod(j=1,k,floor((n-k-j+1)/j)))}
for(n=0,60,print1(a(n),", "))
A208060
a(n) = 1 + 2*n + 2^2*n*[n/2] + 2^3*n*[n/2]*[n/3] + 2^4*n*[n/2]*[n/3]*[n/4] + ... where [x]=floor(x).
Original entry on oeis.org
1, 3, 13, 43, 233, 611, 4405, 10515, 64145, 218755, 1215821, 2689083, 28162105, 61179795, 307475813, 1236997051, 8042542625, 17101581699, 146671231501, 309740445795, 2415132010441, 8877053064643, 40919003272005, 85564885298027, 1068638260341937, 2783025471994851
Offset: 0
a(5) = 1 + 2*5+ 4*5[5/2] + 8*5[5/2][5/3] + 16*5[5/2][5/3][5/4] + 32*5[5/2][5/3][5/4][5/5] = 1 + 2*5 + 4*5*2 + 8*5*2*1 + 16*5*2*1*1 + 32*5*2*1*1*1 = 611.
-
{a(n)=1+sum(m=1, n, prod(k=1, m, 2*floor(n/k)))}
-
/* More efficient: variant of a program by Charles R Greathouse IV */
{a(n)=my(k=1); 1+sum(m=1, n, k*=2*(n\m))}
for(n=0, 60, print1(a(n), ", "))
A331213
a(n) = 1 + Sum_{i=1..n} (-1)^i * Product_{j=1..i} floor(n/j).
Original entry on oeis.org
1, 0, 1, -2, 5, -4, 13, -27, 89, -80, 191, -450, 2365, -1182, 3221, -13034, 40433, -22320, 96373, -193761, 772981, -728930, 1599357, -3428425, 21411337, -13595724, 31407273, -110011850, 377746853, -198079308, 1096983421, -2241234465, 7565512161, -6472208192
Offset: 0
a(4) = 1 - 4 + 4*floor(4/2) - 4*floor(4/2)*floor(4/3) + 4*floor(4/2)*floor(4/3)*floor(4/4) = 1 - 4 + 4*2 - 4*2*1 + 4*2*1*1 = 5.
-
[1] cat [1+&+[(-1)^i*(&*[Floor(n/j):j in [1..i]]):i in [1..n]]:n in [1..33]]; // Marius A. Burtea, Jan 13 2020
-
a[n_] := 1 + Sum[(-1)^i * Product[Floor[n/j], {j, 1, i}],{i, 1, n}]; Array[a, 34, 0] (* Amiram Eldar, Jan 13 2020 *)
-
{a(n) = 1+sum(i=1, n, (-1)^i*prod(j=1, i, floor(n/j)))}
A213907
a(n) = 1 + n + n*{n/2} + n*{n/2}*{n/3} + n*{n/2}*{n/3}*{n/4} +... where {x} = [x+1/2] = round(x).
Original entry on oeis.org
1, 3, 9, 34, 61, 261, 709, 1324, 4937, 15040, 28561, 107262, 248341, 522445, 1972363, 7591936, 8835345, 26421129, 145475533, 183752250, 701184621, 2234736295, 2996725227, 15105451596, 32483720761, 77618520551, 217809217211, 625456400842, 1638545943301
Offset: 0
a(2) = 1 + 2 + 2*1 + 2*1*1 + 2*1*1*1 = 9.
a(3) = 1 + 3 + 3*2 + 3*2*1 + 3*2*1*1 + 3*2*1*1*1 + 3*2*1*1*1*1 = 34.
-
{a(n)=1+sum(m=1, 2*n, prod(k=1, m, round(n/k)))}
for(n=0, 60, print1(a(n), ", "))
Showing 1-7 of 7 results.
Comments