cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A131688 Decimal expansion of the constant Sum_{k>=1} log(k + 1) / (k * (k + 1)).

Original entry on oeis.org

1, 2, 5, 7, 7, 4, 6, 8, 8, 6, 9, 4, 4, 3, 6, 9, 6, 3, 0, 0, 0, 9, 8, 9, 9, 8, 3, 0, 4, 9, 5, 8, 8, 1, 5, 2, 8, 5, 1, 1, 5, 4, 0, 8, 9, 0, 5, 0, 8, 8, 8, 4, 8, 6, 8, 9, 7, 7, 5, 4, 0, 8, 3, 3, 5, 2, 2, 5, 4, 9, 9, 9, 4, 8, 9, 3, 7, 4, 4, 9, 3, 4, 9, 7, 0, 7, 9, 0, 4, 7, 3, 1, 5, 0, 1, 9, 0, 9, 7, 8, 2, 4, 5, 4, 8
Offset: 1

Views

Author

R. J. Mathar, Sep 14 2007

Keywords

Comments

Given A131385(n) = Product_{k=1..n} floor((n+k)/k), then limit A131385(n+1)/A131385(n) = exp(c), where c = this constant. - Paul D. Hanna, Nov 26 2012
Closely related to A085361 (the exponent in the definition of A085291). - Yuriy Sibirmovsky, Sep 04 2016

Examples

			1.257746886944369630009899830495881528511540890508884868977540833522...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, page 62. [Jean-François Alcover, Mar 21 2013]

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); L:=RiemannZeta(); (&+[(-1)^(n+1)*Evaluate(L,n+1)/n: n in [1..10^3]]); // G. C. Greubel, Nov 15 2018
    
  • Maple
    evalf(sum((-1)^(n+1)*Zeta(n+1)/n, n=1..infinity), 120); # Vaclav Kotesovec, Dec 11 2015
    evalf(Sum(-Zeta(1, k), k = 2..infinity), 120); # Vaclav Kotesovec, Jun 18 2021
  • Mathematica
    Sum[ -Zeta'[1 + k], {k, 1, Infinity}] (* Vladimir Reshetnikov, Dec 28 2008 *)
    Integrate[EulerGamma/x + PolyGamma[0, 1+x]/x, {x, 0, 1}] // N[#, 105]& // RealDigits[#][[1]]& (* or *) Integrate[x*Log[x]/((1-x)*Log[1-x]), {x, 0, 1}] // N[#, 105]& // RealDigits[#][[1]]& (* Jean-François Alcover, Feb 04 2013 *)
    $MaxExtraPrecision = 200; NIntegrate[HarmonicNumber[t]/t, {t, 0, 1}, WorkingPrecision -> 105] (* Yuriy Sibirmovsky, Sep 04 2016 *)
    digits = 120; RealDigits[NSum[(-1)^(n + 1)*Zeta[n + 1]/n, {n,1,Infinity}, NSumTerms -> 20*digits, WorkingPrecision -> 10*digits, Method -> "AlternatingSigns"], 10, digits][[1]] (* G. C. Greubel, Nov 15 2018 *)
  • PARI
    sumalt(s=1, (-1)^(s+1)/s*zeta(s+1) )
    
  • PARI
    suminf(k=2, -zeta'(k)) \\ Vaclav Kotesovec, Jun 17 2021
    
  • SageMath
    numerical_approx(sum((-1)^(k+1)*zeta(k+1)/k for k in [1..1000]), digits=100) # G. C. Greubel, Nov 15 2018

Formula

Equals Sum_{s>=1} (-1)^(s+1)*zeta(s+1)/s.
Equals Sum_{k>=1} -zeta'(1 + k), where Zeta' is the derivative of the Riemann zeta function. - Vladimir Reshetnikov, Dec 28 2008
Equals Sum_{s>=1} log(1+1/s)/s. - Jean-François Alcover, Mar 26 2013
Equals Integral_{t=0..1} H(t)/t dt. Compare to A001620 = Integral_{t=0..1} H(t) dt. Where H(t) are generalized harmonic numbers. - Yuriy Sibirmovsky, Sep 04 2016
Equals lim_{n->oo} log(d(n!))*log(n)/n, where d(n) is the number of divisors of n (A000005) (Erdős et al., 1996). - Amiram Eldar, Nov 07 2020

Extensions

Extended to 105 digits by Jean-François Alcover, Feb 04 2013

A085361 Decimal expansion of the number c = Sum_{n>=1} (zeta(n+1)-1)/n.

Original entry on oeis.org

7, 8, 8, 5, 3, 0, 5, 6, 5, 9, 1, 1, 5, 0, 8, 9, 6, 1, 0, 6, 0, 2, 7, 6, 3, 2, 3, 4, 5, 4, 5, 5, 4, 6, 6, 6, 4, 7, 2, 7, 4, 9, 6, 6, 8, 2, 2, 3, 2, 8, 1, 6, 4, 9, 7, 5, 5, 1, 5, 6, 4, 0, 2, 3, 0, 1, 7, 8, 0, 6, 4, 3, 5, 6, 3, 3, 0, 1, 6, 2, 2, 8, 7, 4, 7, 1, 5, 9, 2, 1, 3, 3, 2, 2, 4, 3, 1, 9, 6, 7, 5, 6
Offset: 0

Views

Author

Eric W. Weisstein, Jun 25 2003

Keywords

Comments

The Alladi-Grinstead constant (A085291) is exp(c-1).

Examples

			0.78853056591150896106027632345455466647274966822328164975515640230178...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(120)); L:=RiemannZeta(); (&+[(Evaluate(L,n+1)-1)/n: n in [1..1000]]); // G. C. Greubel, Nov 15 2018
  • Maple
    evalf(sum((Zeta(n+1)-1)/n, n=1..infinity), 120); # Vaclav Kotesovec, Dec 11 2015
    evalf(Sum(-(-1)^k*Zeta(1, k), k = 2..infinity), 120); # Vaclav Kotesovec, Jun 18 2021
  • Mathematica
    Sum[(-1+Zeta[1+n])/n,{n,Infinity}]
    NSum[Log[k]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms ->5000, Method -> {NIntegrate, MaxRecursion -> 100}] (* Vaclav Kotesovec, Dec 11 2015 *)
  • PARI
    suminf(n=1,(zeta(n+1)-1-2^(-n-1))/n)+log(2)/2 \\ Charles R Greathouse IV, Feb 20 2012
    
  • PARI
    sumalt(k=2, -(-1)^k * zeta'(k)) \\ Vaclav Kotesovec, Jun 17 2021
    
  • Sage
    import mpmath
    mpmath.mp.pretty=True; mpmath.mp.dps=108 #precision
    mpmath.nsum(lambda n: (-1+mpmath.zeta(1+n))/n, [1,mpmath.inf]) # Peter Luschny, Jul 14 2012
    
  • Sage
    numerical_approx(sum((zeta(k+1)-1)/k for k in [1..1000]), digits=120) # G. C. Greubel, Nov 15 2018
    

Formula

Equals Sum_{n>=2} log(n/(n-1))/n = Sum_{n>=1, k>=2} 1/(n*k^(n+1)). [From Mathworld links]
Equals -Sum_{k>=2} (-1)^k * zeta'(k). - Vaclav Kotesovec, Jun 17 2021
Equals log(A245254) = Sum_{k>=1} log(k)/(k*(k+1)). - Amiram Eldar, Jun 27 2021
Equals -log(A242624). - Amiram Eldar, Feb 06 2022

A131385 Product ceiling(n/1)*ceiling(n/2)*ceiling(n/3)*...*ceiling(n/n) (the 'ceiling factorial').

Original entry on oeis.org

1, 1, 2, 6, 16, 60, 144, 672, 1536, 6480, 19200, 76032, 165888, 1048320, 2257920, 8294400, 28311552, 126904320, 268738560, 1470873600, 3096576000, 16094453760, 51385466880, 175814737920, 366917713920, 2717245440000, 6782244618240, 22754631352320, 69918208819200
Offset: 0

Views

Author

Hieronymus Fischer, Jul 08 2007

Keywords

Comments

From R. J. Mathar, Dec 05 2012: (Start)
a(n) = b(n-1) because a(n) = Product_{k=1..n} ceiling(n/k) = Product_{k=1..n-1} ceiling(n/k) = n*Product_{k=2..n-1} ceiling(n/k) = Product_{k=1..1} (1+(n-1)/k)*Product_{k=2..n-1} ceiling(n/k).
The cases of the product are (i) k divides n but does not divide n-1, ceiling(n/k) = n/k = 1 + floor((n-1)/k), (ii) k does not divide n but divides n-1, ceiling(n/k) = 1 + (n-1)/k = 1 + floor((n-1)/k) and (iii) k divides neither n nor n-1, ceiling(n/k) = 1 + floor((n-1)/k).
In all cases, including k=1, a(n) = Product_{k=1..n-1} (1+floor((n-1)/k)) = Product_{k=1..n-1} floor(1+(n-1)/k) = b(n-1).
(End)
a(n) is the number of functions f:D->{1,2,..,n-1} where D is any subset of {1,2,..,n-1} and where f(x) == 0 (mod x) for every x in D. - Dennis P. Walsh, Nov 13 2015

Examples

			From _Paul D. Hanna_, Nov 26 2012: (Start)
Illustrate initial terms using formula involving the floor function []:
  a(1) = 1;
  a(2) = [2/1] = 2;
  a(3) = [3/1]*[4/2] = 6;
  a(4) = [4/1]*[5/2]*[6/3] = 16;
  a(5) = [5/1]*[5/2]*[7/3]*[8/4] = 60;
  a(6) = [6/1]*[7/2]*[8/3]*[9/4]*[10/5] = 144.
Illustrate another alternative generating method:
  a(1) = 1;
  a(2) = (2/1)^[1/1] = 2;
  a(3) = (2/1)^[2/1] * (3/2)^[2/2] = 6;
  a(4) = (2/1)^[3/1] * (3/2)^[3/2] * (4/3)^[3/3] = 16;
  a(5) = (2/1)^[4/1] * (3/2)^[4/2] * (4/3)^[4/3] * (5/4)^[4/4] = 60.
(End)
For n=3 the a(3)=6 functions f from subsets of {1,2} into {1,2} with f(x) == 0 (mod x) are the following: f=empty set (since null function vacuously holds), f={(1,1)}, f={(1,2)}, f={(2,2)}, f={(1,1),(2,2)}, and f={(1,2),(2,2)}. - _Dennis P. Walsh_, Nov 13 2015
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(ceil(n/k), k=1..n):
    seq(a(n), n=0..40); # Dennis P. Walsh, Nov 13 2015
  • Mathematica
    Table[Product[Ceiling[n/k],{k,n}],{n,25}] (* Harvey P. Dale, Sep 18 2011 *)
  • PARI
    a(n)=prod(k=1,n-1,floor((n+k-1)/k)) \\ Paul D. Hanna, Feb 01 2013
    
  • PARI
    a(n)=prod(k=1,n-1,((k+1)/k)^floor((n-1)/k))
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Feb 01 2013

Formula

a(n) = Product_{k=1..n} ceiling(n/k).
Formulas from Paul D. Hanna, Nov 26 2012: (Start)
a(n) = Product_{k=1..n-1} floor((n+k-1)/k) for n>1.
a(n) = Product_{k=1..n-1} ((k+1)/k)^floor((n-1)/k) for n>1.
Limits: Let L = limit a(n+1)/a(n) = 3.51748725590236964939979369932386417..., then
(1) L = exp( Sum_{n>=1} log((n+1)/n) / n ) ;
(2) L = 2 * exp( Sum_{n>=1} (-1)^(n+1) * Sum_{k>=2} 1/(n*k^(n+1)) ) ;
(4) L = exp( Sum_{n>=1} (-1)^(n+1) * zeta(n+1)/n ) ;
(5) L = exp( Sum_{n>=1} log(n+1) / (n*(n+1)) ) = exp(c) where c = constant A131688.
Compare L to Alladi-Grinstead constant defined by A085291 and A085361.
(End)
a(n) = A308820(n)/A092143(n-1) for n > 0. - Ridouane Oudra, Sep 28 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 30 2023

A245254 Decimal expansion of U = Product_{k>=1} (k^(1/(k*(k+1)))), a Khintchine-like limiting constant related to Lüroth's representation of real numbers.

Original entry on oeis.org

2, 2, 0, 0, 1, 6, 1, 0, 5, 8, 0, 9, 9, 0, 2, 6, 5, 5, 3, 1, 9, 4, 5, 5, 7, 8, 6, 6, 5, 5, 9, 9, 4, 4, 8, 7, 2, 6, 8, 5, 6, 6, 2, 3, 2, 4, 7, 5, 2, 7, 2, 3, 8, 8, 8, 7, 2, 3, 1, 4, 5, 1, 1, 7, 7, 6, 3, 1, 6, 9, 0, 1, 1, 2, 6, 9, 6, 6, 5, 9, 4, 7, 5, 8, 4, 7, 0, 2, 9, 7, 3, 4, 7, 2, 6, 8, 0, 7, 6, 2, 5, 8, 1, 6, 1
Offset: 1

Views

Author

Jean-François Alcover, Jul 15 2014

Keywords

Comments

The geometric mean of the Yule-Simon distribution with parameter value 1 (A383855) approaches this constant. In general, the geometric mean of the Yule-Simon distribution approaches Product_{k>=2} k^(1/(p*Beta(k,p+1))). - Jwalin Bhatt, May 12 2025

Examples

			2.200161058099026553194557866559944872685662324752723888723145117763169...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.

Crossrefs

Programs

  • Maple
    evalf(exp(Sum((Zeta(n+1)-1)/n, n=1..infinity)), 120); # Vaclav Kotesovec, Dec 11 2015
  • Mathematica
    Exp[NSum[Log[k]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 5000, Method -> {NIntegrate, MaxRecursion -> 100}]] (* Vaclav Kotesovec, Dec 11 2015 *)

Formula

Equals exp(A085361).
U*V*W = 1, where V is A244109 and W is A131688.
Equals e * A085291. - Amiram Eldar, Jun 27 2021
Equals 1/A242624. - Amiram Eldar, Feb 06 2022

Extensions

Corrected by Vaclav Kotesovec, Dec 11 2015

A085288 Number of sorted multiplicative partitions of n!.

Original entry on oeis.org

1, 1, 3, 3, 10, 10, 30, 75, 220, 220, 588, 588, 1568, 3696, 11616, 11616, 30492, 30492, 84700, 173250, 441000, 441000, 1262520, 2777544, 6957720, 16731660, 43506760, 43506760, 98658000, 98658000, 277101000, 541886400, 1322481600, 2715495552
Offset: 2

Views

Author

Eric W. Weisstein, Jun 23 2003

Keywords

Comments

Number of decompositions of n! into factors of the form (p_k)^(e^k).

Examples

			4! = 3*8 = 2*3*4 = 2*2*2*3, so a(4)=3.
5! = 3*5*8 = 2*3*4*5 = 2*2*2*3*5, so a(5)=3.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger[ n!]; Array[f, 34, 2] (* Robert G. Wilson v, Sep 22 2006 *)

Formula

a(n) = A000688(n!) = A000688(A000142(n)). - Vladeta Jovovic, Jun 27 2003

Extensions

More terms from Vladeta Jovovic, Jun 27 2003

A085289 Number of sorted multiplicative partitions of n! of length n.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 12, 31, 31, 78, 78, 191, 418, 1220, 1220, 3015, 3015, 7889, 15413, 37012, 37012, 100559, 211426, 501520, 1157544, 2880550, 2880550, 6307387, 6307387, 17134912, 32298263, 75200323, 148928952, 359182792, 359182792
Offset: 2

Views

Author

Eric W. Weisstein, Jun 23 2003

Keywords

Comments

If p is prime then a(p) = a(p-1). - David Wasserman, Jan 31 2005

Examples

			4! = 2*2*2*3, so a(4)=1.
6! = 2*2*2*2*5*9 = 2*2*3*3*4*5, so a(6)=2.
		

Crossrefs

Extensions

More terms from David Wasserman, Jan 31 2005

A085290 Max[p1^b1] over all sorted multiplicative partitions of n! of length n.

Original entry on oeis.org

2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 16, 16, 16, 16, 16, 16, 16
Offset: 4

Views

Author

Eric W. Weisstein, Jun 23 2003

Keywords

Examples

			6! = 2*2*2*2*5*9 = 2*2*3*3*4*5, the smallest terms of which are 2 and 2, so a(6)=Max[2,2]=2.
		

Crossrefs

Programs

  • PARI
    works(n, m) = local(f, s, l, p, x); f = factor(n!); s = 0; l = matsize(f)[1]; for (i = 1, l, p = f[i, 1]; x = 1; while (p^x < m, x++); s += f[i, 2]\x; if (f[i, 2] < x, return(0))); s >= n; a(n) = local(f, m); f = factor(n); m = 2; while (works(n, m), m++); m - 1 \\ David Wasserman, Jan 31 2005

Extensions

More terms from David Wasserman, Jan 31 2005
Showing 1-7 of 7 results.