cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A085291 Decimal expansion of Alladi-Grinstead constant exp(c-1), where c is given in A085361.

Original entry on oeis.org

8, 0, 9, 3, 9, 4, 0, 2, 0, 5, 4, 0, 6, 3, 9, 1, 3, 0, 7, 1, 7, 9, 3, 1, 8, 8, 0, 5, 9, 4, 0, 9, 1, 3, 1, 7, 2, 1, 5, 9, 5, 3, 9, 9, 2, 4, 2, 5, 0, 0, 0, 3, 0, 4, 2, 4, 2, 0, 2, 8, 7, 1, 5, 0, 4, 2, 9, 9, 9, 0, 1, 2, 5, 1, 6, 5, 4, 7, 3, 2, 2, 3, 1, 1, 5, 1, 8, 4, 0, 7, 8, 1, 9, 7, 2, 3, 6, 1, 6, 9, 1, 5
Offset: 0

Views

Author

Eric W. Weisstein, Jun 25 2003

Keywords

Comments

Named after the Indian-American mathematician Krishnaswami Alladi (b. 1955) and the American mathematician Charles Miller Grinstead (b. 1952). - Amiram Eldar, Jun 15 2021

Examples

			0.80939402054063913071793188059409131721595399242500030424202871504...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 120-122.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B22.

Crossrefs

Programs

  • Maple
    evalf(exp(sum((Zeta(n+1)-1)/n, n=1..infinity)-1), 120); # Vaclav Kotesovec, Dec 11 2015
  • Mathematica
    $MaxExtraPrecision = 256; RealDigits[ Exp[ Sum[ N[(-1 + Zeta[1 + n])/n, 256], {n, 350}] - 1], 10, 111][[1]] (* Robert G. Wilson v, Nov 23 2005 *)
  • PARI
    exp(suminf(n=1, (zeta(n+1)-1)/n) - 1) \\ Michel Marcus, May 19 2020

Formula

Equals exp(c-1), where c is Sum_{n>=1} (zeta(n+1) - 1)/n (cf. A085361).
Equals lim_{n->oo} (Product_{k=1..n} (k/n)*floor(n/k))^(1/n). - Benoit Cloitre, Jul 15 2022

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jun 24 2003

A085288 Number of sorted multiplicative partitions of n!.

Original entry on oeis.org

1, 1, 3, 3, 10, 10, 30, 75, 220, 220, 588, 588, 1568, 3696, 11616, 11616, 30492, 30492, 84700, 173250, 441000, 441000, 1262520, 2777544, 6957720, 16731660, 43506760, 43506760, 98658000, 98658000, 277101000, 541886400, 1322481600, 2715495552
Offset: 2

Views

Author

Eric W. Weisstein, Jun 23 2003

Keywords

Comments

Number of decompositions of n! into factors of the form (p_k)^(e^k).

Examples

			4! = 3*8 = 2*3*4 = 2*2*2*3, so a(4)=3.
5! = 3*5*8 = 2*3*4*5 = 2*2*2*3*5, so a(5)=3.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger[ n!]; Array[f, 34, 2] (* Robert G. Wilson v, Sep 22 2006 *)

Formula

a(n) = A000688(n!) = A000688(A000142(n)). - Vladeta Jovovic, Jun 27 2003

Extensions

More terms from Vladeta Jovovic, Jun 27 2003

A085290 Max[p1^b1] over all sorted multiplicative partitions of n! of length n.

Original entry on oeis.org

2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 16, 16, 16, 16, 16, 16, 16
Offset: 4

Views

Author

Eric W. Weisstein, Jun 23 2003

Keywords

Examples

			6! = 2*2*2*2*5*9 = 2*2*3*3*4*5, the smallest terms of which are 2 and 2, so a(6)=Max[2,2]=2.
		

Crossrefs

Programs

  • PARI
    works(n, m) = local(f, s, l, p, x); f = factor(n!); s = 0; l = matsize(f)[1]; for (i = 1, l, p = f[i, 1]; x = 1; while (p^x < m, x++); s += f[i, 2]\x; if (f[i, 2] < x, return(0))); s >= n; a(n) = local(f, m); f = factor(n); m = 2; while (works(n, m), m++); m - 1 \\ David Wasserman, Jan 31 2005

Extensions

More terms from David Wasserman, Jan 31 2005

A103332 Min[pn^bn] over all sorted multiplicative partitions of n! of length n.

Original entry on oeis.org

3, 5, 5, 7, 7, 8, 8, 11, 11, 13, 13, 13, 13, 17, 17, 19, 19, 19, 19, 23, 23, 25, 25, 25, 25, 29, 29, 31, 31, 31, 31, 31, 31, 37, 37, 37, 37, 41, 41, 43, 43, 43, 43, 47, 47, 49, 49, 49, 49, 53, 53, 53, 53, 53, 53, 59, 59, 61, 61, 61, 61, 61, 64, 67, 67, 67, 67, 71, 71, 73, 73, 73
Offset: 4

Views

Author

David Wasserman, Jan 31 2005

Keywords

Comments

a(n) >= A007917(n); a(n) is a power of some prime p <= n.

Crossrefs

Programs

  • PARI
    works(n, m) = local(f, s, l, p, x); f = factor(n!); s = 0; l = matsize(f)[1]; if (f[l, 1] > m, return(0)); for (i = 1, l, p = f[i, 1]; x = 1; while (p^x <= m, x++); x--; s += f[i, 2]\x; if (f[i, 2]%x, s++)); s <= n; a(n) = local(f, m); f = factor(n); m = f[matsize(f)[1], 1]; while (!works(n, m), m++); m
Showing 1-4 of 4 results.