cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A001088 Product of totient function: a(n) = Product_{k=1..n} phi(k) (cf. A000010).

Original entry on oeis.org

1, 1, 1, 2, 4, 16, 32, 192, 768, 4608, 18432, 184320, 737280, 8847360, 53084160, 424673280, 3397386240, 54358179840, 326149079040, 5870683422720, 46965467381760, 563585608581120, 5635856085811200, 123988833887846400, 991910671102771200, 19838213422055424000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j) for 1 <= i,j <= n [Smith and Mansion]. - Avi Peretz (njk(AT)netvision.net.il), Mar 20 2001
The matrix M(i,j) = gcd(i,j) is sequence A003989. - Michael Somos, Jun 25 2012

Examples

			a(2) = 1 because the matrix M is: [1,1; 1,2] and det(A) = 1.
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 598.
  • M. Petkovsek et al., A=B, Peters, 1996, p. 21.

Crossrefs

Programs

Formula

a(n) = phi(1) * phi(2) * ... * phi(n).
Limit_{n->infinity} a(n)^(1/n) / n = exp(-1) * A124175 = 0.205963050288186353879675428232497466485878059342058515016427881513657493... (see Mathoverflow link). - Vaclav Kotesovec, Jun 09 2021

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 19 2023

A126908 Numbers k such that 1 + k^2 + k^4 + k^6 + k^7 is prime.

Original entry on oeis.org

1, 4, 13, 15, 24, 30, 37, 40, 55, 93, 138, 139, 148, 153, 154, 159, 160, 165, 184, 195, 204, 223, 258, 303, 355, 360, 373, 459, 472, 475, 510, 519, 534, 577, 594, 607, 615, 627, 658, 672, 688, 723, 735, 739, 795, 805, 807, 817, 819, 820, 847, 874, 879, 904
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^7], AppendTo[a, n]], {n, 1, 1400}]; a
    Select[Range[1000],PrimeQ[1+#^2+#^4+#^6+#^7]&] (* Harvey P. Dale, Jan 15 2016 *)
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^7) \\ Charles R Greathouse IV, Feb 17 2017

A126916 Numbers n such that 1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^16 + n^18 + n^20 + n^22 + n^23 is prime.

Original entry on oeis.org

1, 2, 11, 23, 47, 64, 77, 80, 103, 251, 290, 321, 331, 335, 375, 382, 387, 403, 507, 568, 590, 594, 649, 801, 805, 828, 830, 840, 847, 854, 905, 925, 926, 959, 982, 986, 1034, 1086, 1094, 1102, 1122, 1129, 1147, 1160, 1391
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^16 + n^18 + n^20 + n^22 + n^23], AppendTo[a, n]], {n, 1, 1400}]; a
    Select[Range[1400],PrimeQ[Total[#^Range[2,22,2]]+1+#^23]&] (* Harvey P. Dale, Oct 04 2018 *)
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^16+n^18+n^20+n^22+n^23) \\ Charles R Greathouse IV, Feb 17 2017

A345144 Product_{p primes, k>=1} ((p^(k+1) - 1)/(p^(k+1) - p))^(1/p^k).

Original entry on oeis.org

1, 5, 6, 1, 5, 9, 6, 8, 4, 6, 9, 3, 1, 0, 2, 4, 1, 6, 4, 3, 2, 6, 9, 6, 7, 8, 8, 9, 1, 4, 4, 5, 5, 5, 6, 4, 4, 3, 6, 4, 7, 3, 7, 6, 4, 6, 8, 2, 2, 2, 3, 2, 1, 6, 9, 9, 4, 5, 8, 6, 6, 4, 5, 7, 0, 9, 6, 8, 3, 5, 7, 8, 4, 9, 4, 9, 0, 9, 5, 3, 9, 8, 8, 9, 4, 2, 4, 4, 3, 0, 1, 0, 8, 6, 8, 0, 9, 1, 0, 3, 2, 1, 4, 3, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 09 2021

Keywords

Examples

			1.561596846931024164326967889144555644364737646822232169945866457...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 500; prod = 1; Do[Clear[f]; f[p_] := ((p^(k + 1) - 1)/(p^(k + 1) - p))^(1/p^k); cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x, m + 1]]; prod *= f[2]*Exp[N[Sum[Indexed[cc, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 100]]; Print[prod], {k, 1, 200}]

Formula

Equals exp(1) * lim_{n->infinity} (A066780(n)^(1/n)) / n.

A126226 Continued fraction of Product_{primes p} ((p-1)/p)^(1/p).

Original entry on oeis.org

0, 1, 1, 3, 1, 2, 11, 1, 1, 4, 1, 9, 2, 2, 1, 1, 4, 4, 2, 2, 2, 1, 14, 1, 2, 2, 2, 7, 2, 2, 1, 1, 4, 2, 4, 1, 11, 7, 2, 8, 32, 2, 1, 293, 2, 145, 1, 2, 1, 21, 1, 1, 3, 1, 1, 8, 8, 5, 2, 3, 4, 3, 1, 3, 1, 1, 1, 1, 3, 2, 1, 3, 1, 2, 2, 1, 2, 19, 3, 2, 1, 15, 1, 2, 1, 2, 5, 3, 1, 1, 1, 38, 1, 10, 1, 2, 1, 80, 1
Offset: 0

Views

Author

Martin Fuller, Dec 20 2006

Keywords

Comments

This might be interpreted as the expected value of phi(n)/n for very large n. - David W. Wilson, Dec 05 2006

Examples

			0.55986561693237348...
		

Crossrefs

Programs

  • PARI
    contfrac(exp(-suminf(m=2,log(zeta(m))*sumdiv(m,k,if(k
    				

A126906 Smallest k such that 1 + k^(2*n+1) + Sum_{j=1..n} k^(2*j) is prime.

Original entry on oeis.org

1, 2, 1, 2, 1, 10, 17, 2, 1, 2, 1, 94, 122, 22, 1, 80, 1, 4, 6, 2, 1, 242, 3, 6, 5, 80, 1, 12, 1, 82, 96, 2, 7, 188, 1, 136, 69, 158, 1, 2, 1, 954, 50, 118, 1, 570, 14, 90, 45, 6, 1, 228, 38, 4, 6, 22, 1, 12, 1, 580, 86, 336, 24, 768, 1, 1170, 408, 340, 1, 896
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Comments

1 is a term if and only if number of terms in polynomial is prime.

Crossrefs

Programs

  • Mathematica
    a[n_]: = Module[{k = 1}, While[!PrimeQ[1 + k^(2*n+1) + Sum[k^(2*j), {j, 1, n}]], k++]; k]; Array[a, 30] (* Amiram Eldar, Mar 13 2020 *)
  • PARI
    a(n) = my(k = 1); while(! isprime(1 + k^(2*n+1) + sum(j=1, n, k^(2*j))), k++); k; \\ Michel Marcus, Mar 13 2020

Extensions

More terms from Amiram Eldar, Mar 13 2020

A126907 Numbers n such that 1 + n^2 + n^4 + n^5 is prime.

Original entry on oeis.org

2, 4, 6, 8, 12, 18, 32, 34, 68, 70, 78, 88, 110, 114, 116, 118, 120, 122, 132, 134, 142, 150, 172, 180, 186, 190, 210, 216, 238, 246, 254, 272, 294, 322, 362, 376, 380, 386, 388, 408, 476, 500, 502, 506, 508, 520, 530, 542, 564, 584, 588, 590, 616, 620, 632
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^5], AppendTo[a, n]], {n, 1, 1400}]; a
    Select[Range[700],PrimeQ[1+#^2+#^4+#^5]&] (* Harvey P. Dale, Jun 24 2018 *)
  • PARI
    is(n)=isprime(1+n^2+n^4+n^5) \\ Charles R Greathouse IV, Jun 13 2017

A126909 Numbers n such that 1 + n^2 + n^4 + n^6 + n^8 + n^9 is prime.

Original entry on oeis.org

2, 18, 48, 56, 116, 120, 128, 146, 194, 198, 200, 230, 266, 278, 282, 288, 324, 362, 372, 390, 396, 420, 434, 458, 488, 576, 594, 708, 714, 728, 740, 774, 818, 830, 860, 888, 896, 912, 914, 990, 996, 1002, 1008, 1010, 1016, 1044, 1124, 1128, 1140, 1146, 1260
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^9], AppendTo[a, n]], {n, 1, 1400}]; a
    Select[Range[1300],PrimeQ[1+#^2+#^4+#^6+#^8+#^9]&] (* Harvey P. Dale, Apr 25 2020 *)
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^9) \\ Charles R Greathouse IV, Jun 13 2017

A126910 Numbers k such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^11 is prime.

Original entry on oeis.org

1, 2, 3, 35, 48, 77, 97, 105, 111, 112, 122, 128, 161, 168, 175, 216, 231, 255, 271, 276, 297, 338, 361, 370, 378, 422, 485, 513, 525, 558, 622, 658, 661, 662, 667, 675, 700, 718, 725, 742, 753, 766, 770, 795, 796, 833, 875, 886, 921, 993, 1027, 1066, 1078
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^11], AppendTo[a, n]], {n, 1, 1400}]; a
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^11) \\ Charles R Greathouse IV, Jun 13 2017

A126911 Numbers k such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^13 is prime.

Original entry on oeis.org

10, 24, 60, 148, 174, 180, 268, 274, 280, 294, 346, 472, 484, 516, 522, 598, 654, 804, 834, 856, 858, 898, 994, 1012, 1036, 1054, 1066, 1102, 1168, 1272, 1294, 1338, 1342, 1368, 1420, 1462, 1500, 1536, 1564, 1588, 1608, 1624, 1710, 1746, 1786, 1792, 1822, 1992
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^13], AppendTo[a, n]], {n, 1, 1400}]; a
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^13) \\ Charles R Greathouse IV, Jun 13 2017
    
  • Python
    from sympy import isprime
    def ok(k): return isprime(1+sum(k**i for i in [2, 4, 6, 8, 10, 12, 13]))
    print([k for k in range(2000) if ok(k)]) # Michael S. Branicky, Oct 24 2021
Showing 1-10 of 14 results. Next