cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A126908 Numbers k such that 1 + k^2 + k^4 + k^6 + k^7 is prime.

Original entry on oeis.org

1, 4, 13, 15, 24, 30, 37, 40, 55, 93, 138, 139, 148, 153, 154, 159, 160, 165, 184, 195, 204, 223, 258, 303, 355, 360, 373, 459, 472, 475, 510, 519, 534, 577, 594, 607, 615, 627, 658, 672, 688, 723, 735, 739, 795, 805, 807, 817, 819, 820, 847, 874, 879, 904
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^7], AppendTo[a, n]], {n, 1, 1400}]; a
    Select[Range[1000],PrimeQ[1+#^2+#^4+#^6+#^7]&] (* Harvey P. Dale, Jan 15 2016 *)
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^7) \\ Charles R Greathouse IV, Feb 17 2017

A126906 Smallest k such that 1 + k^(2*n+1) + Sum_{j=1..n} k^(2*j) is prime.

Original entry on oeis.org

1, 2, 1, 2, 1, 10, 17, 2, 1, 2, 1, 94, 122, 22, 1, 80, 1, 4, 6, 2, 1, 242, 3, 6, 5, 80, 1, 12, 1, 82, 96, 2, 7, 188, 1, 136, 69, 158, 1, 2, 1, 954, 50, 118, 1, 570, 14, 90, 45, 6, 1, 228, 38, 4, 6, 22, 1, 12, 1, 580, 86, 336, 24, 768, 1, 1170, 408, 340, 1, 896
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Comments

1 is a term if and only if number of terms in polynomial is prime.

Crossrefs

Programs

  • Mathematica
    a[n_]: = Module[{k = 1}, While[!PrimeQ[1 + k^(2*n+1) + Sum[k^(2*j), {j, 1, n}]], k++]; k]; Array[a, 30] (* Amiram Eldar, Mar 13 2020 *)
  • PARI
    a(n) = my(k = 1); while(! isprime(1 + k^(2*n+1) + sum(j=1, n, k^(2*j))), k++); k; \\ Michel Marcus, Mar 13 2020

Extensions

More terms from Amiram Eldar, Mar 13 2020

A126907 Numbers n such that 1 + n^2 + n^4 + n^5 is prime.

Original entry on oeis.org

2, 4, 6, 8, 12, 18, 32, 34, 68, 70, 78, 88, 110, 114, 116, 118, 120, 122, 132, 134, 142, 150, 172, 180, 186, 190, 210, 216, 238, 246, 254, 272, 294, 322, 362, 376, 380, 386, 388, 408, 476, 500, 502, 506, 508, 520, 530, 542, 564, 584, 588, 590, 616, 620, 632
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^5], AppendTo[a, n]], {n, 1, 1400}]; a
    Select[Range[700],PrimeQ[1+#^2+#^4+#^5]&] (* Harvey P. Dale, Jun 24 2018 *)
  • PARI
    is(n)=isprime(1+n^2+n^4+n^5) \\ Charles R Greathouse IV, Jun 13 2017

A126909 Numbers n such that 1 + n^2 + n^4 + n^6 + n^8 + n^9 is prime.

Original entry on oeis.org

2, 18, 48, 56, 116, 120, 128, 146, 194, 198, 200, 230, 266, 278, 282, 288, 324, 362, 372, 390, 396, 420, 434, 458, 488, 576, 594, 708, 714, 728, 740, 774, 818, 830, 860, 888, 896, 912, 914, 990, 996, 1002, 1008, 1010, 1016, 1044, 1124, 1128, 1140, 1146, 1260
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^9], AppendTo[a, n]], {n, 1, 1400}]; a
    Select[Range[1300],PrimeQ[1+#^2+#^4+#^6+#^8+#^9]&] (* Harvey P. Dale, Apr 25 2020 *)
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^9) \\ Charles R Greathouse IV, Jun 13 2017

A126910 Numbers k such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^11 is prime.

Original entry on oeis.org

1, 2, 3, 35, 48, 77, 97, 105, 111, 112, 122, 128, 161, 168, 175, 216, 231, 255, 271, 276, 297, 338, 361, 370, 378, 422, 485, 513, 525, 558, 622, 658, 661, 662, 667, 675, 700, 718, 725, 742, 753, 766, 770, 795, 796, 833, 875, 886, 921, 993, 1027, 1066, 1078
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^11], AppendTo[a, n]], {n, 1, 1400}]; a
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^11) \\ Charles R Greathouse IV, Jun 13 2017

A126911 Numbers k such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^13 is prime.

Original entry on oeis.org

10, 24, 60, 148, 174, 180, 268, 274, 280, 294, 346, 472, 484, 516, 522, 598, 654, 804, 834, 856, 858, 898, 994, 1012, 1036, 1054, 1066, 1102, 1168, 1272, 1294, 1338, 1342, 1368, 1420, 1462, 1500, 1536, 1564, 1588, 1608, 1624, 1710, 1746, 1786, 1792, 1822, 1992
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^13], AppendTo[a, n]], {n, 1, 1400}]; a
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^13) \\ Charles R Greathouse IV, Jun 13 2017
    
  • Python
    from sympy import isprime
    def ok(k): return isprime(1+sum(k**i for i in [2, 4, 6, 8, 10, 12, 13]))
    print([k for k in range(2000) if ok(k)]) # Michael S. Branicky, Oct 24 2021

A126912 Numbers k such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^14 + k^15 is prime.

Original entry on oeis.org

17, 47, 71, 72, 95, 99, 107, 113, 123, 134, 135, 147, 159, 239, 257, 261, 263, 278, 299, 324, 348, 435, 477, 500, 521, 534, 536, 546, 563, 567, 585, 633, 635, 642, 716, 737, 750, 753, 852, 905, 974, 1088, 1178, 1181, 1205, 1272, 1283, 1298, 1311, 1331, 1356
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^15], AppendTo[a, n]], {n, 1, 1400}]; a
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^15) \\ Charles R Greathouse IV, Jun 13 2017

A126913 Numbers n such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^14 + k^16 + k^17 is prime.

Original entry on oeis.org

2, 22, 38, 102, 128, 130, 172, 232, 250, 292, 378, 404, 424, 458, 472, 490, 510, 600, 608, 702, 774, 802, 868, 888, 938, 950, 1010, 1140, 1204, 1220, 1274, 1294, 1328, 1372, 1394, 1398, 1402, 1412, 1418, 1502, 1564, 1580, 1602, 1670, 1692, 1792, 1800
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^16 + n^17], AppendTo[a, n]], {n, 1, 1400}]; a
    Select[Range[2000],PrimeQ[Total[#^{0,2,4,6,8,10,12,14,16,17}]]&] (* Harvey P. Dale, Jan 07 2023 *)
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^16+n^17) \\ Charles R Greathouse IV, Jun 13 2017

A126914 Numbers n such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^14 + k^16 + k^18 + k^19 is prime.

Original entry on oeis.org

1, 9, 37, 40, 60, 69, 85, 114, 147, 156, 174, 183, 255, 289, 312, 324, 336, 349, 361, 373, 418, 451, 493, 499, 511, 520, 534, 549, 649, 657, 673, 676, 715, 741, 787, 855, 862, 874, 883, 888, 897, 952, 960, 1021, 1087, 1092, 1104, 1126, 1141, 1147, 1171, 1209
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^16 + n^18 + n^19], AppendTo[a, n]], {n, 1, 1400}]; a
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^16+n^18+n^19) \\ Charles R Greathouse IV, Jun 13 2017

A126915 Numbers k such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^14 + k^16 + k^18 + k^20 + k^21 is prime.

Original entry on oeis.org

2, 6, 12, 60, 68, 138, 270, 446, 488, 620, 656, 798, 872, 942, 950, 1136, 1140, 1256, 1400, 1418, 1506, 1638, 1776, 1922, 1992, 2070, 2082, 2096, 2220, 2346, 2462, 2580, 2606, 2916
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Magma
    [k:k in [1..3000]| IsPrime(1+k^2+k^4+k^6+k^8+k^10+k^12+k^14+k^16+ k^18+k^20 +k^21)]; // Marius A. Burtea, Feb 11 2020
  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^16 + n^18 + n^20 + n^21], AppendTo[a, n]], {n, 1, 1400}]; a
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^16+n^18+n^20+n^21) \\ Charles R Greathouse IV, Jun 13 2017
    
Showing 1-10 of 10 results.