A383861 Central angle of the solution of the Tammes problem for 24 points on the sphere (in radians).
7, 6, 2, 5, 4, 7, 7, 3, 8, 7, 5, 0, 9, 8, 2, 5, 5, 6, 7, 4, 3, 1, 0, 6, 0, 9, 2, 1, 1, 4, 8, 8, 2, 8, 1, 8, 0, 6, 9, 1, 3, 9, 1, 6, 3, 6, 8, 6, 5, 5, 2, 2, 9, 4, 0, 5, 6, 6, 1, 4, 0, 6, 6, 5, 5, 5, 8, 6, 3, 8, 1, 8, 5, 9, 4, 2, 4, 3, 1, 2, 9, 4, 1, 8, 0, 2, 4, 4, 8, 6, 0, 4, 5, 9, 2, 2, 9, 6, 4, 9, 5, 7, 7, 9, 3, 5, 8, 9, 9, 8, 0, 6, 4, 2
Offset: 0
Examples
0.762547738750982556743106092114...
Links
- Laslo Hars, Numerical solutions of the Tammes problem for up to 60 points, Nov 2020, N=24.
- R. M. Robinson, Arrangements of 24 points on the sphere, Math. Ann. 144 (1961) 17-48.
- Wikipedia, Tammes problem
Crossrefs
Programs
-
Maple
t := (1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3))/3 ; arccos((t-1)/(3-t)) ; evalf(%,120);
Formula
cos( this ) = (t-1)/(3-t) where t=A058265.