A383866 The sum of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or an infinitary divisor of the p-adic valuation of n.
1, 3, 4, 7, 6, 12, 8, 11, 13, 18, 12, 28, 14, 24, 24, 19, 18, 39, 20, 42, 32, 36, 24, 44, 31, 42, 31, 56, 30, 72, 32, 35, 48, 54, 48, 91, 38, 60, 56, 66, 42, 96, 44, 84, 78, 72, 48, 76, 57, 93, 72, 98, 54, 93, 72, 88, 80, 90, 60, 168, 62, 96, 104, 79, 84, 144
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
infdivs[n_] := If[n == 1, {1}, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; (* Michael De Vlieger at A077609 *) f[p_, e_] := 1 + Total[p^infdivs[e]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); } infdivs(n) = {d = divisors(n); f = factor(n); idiv = []; for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609 a(n) = {my(f = factor(n), d); prod(i = 1, #f~, d = infdivs(f[i, 2]); 1 + sum(j = 1, #d, f[i, 1]^d[j]));}
Formula
Multiplicative with a(p^e) = 1 + Sum_{d infinitary divisor of e} p^d.
a(n) <= A051378(n), with equality if and only if all the exponents in the prime factorization of n are in A036537.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 1.52187097260174705015..., and f(x) = (1-x) * (1 + Sum_{k>=1} (1 + Sum{d infinitary divisor of k} x^(2*k-d))).
Comments