A383881 a(n) = [x^n] Product_{k=1..3*n} 1/(1 - k*x).
1, 6, 266, 22275, 2757118, 452329200, 92484925445, 22653141490980, 6466506598695390, 2108114165258886708, 772778072287000494520, 314641228029527540596455, 140880584836935832288402135, 68799366730032076856334789900, 36392216443342587869022660451080, 20728132932716479897744043460870000
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
[&+[Abs(StirlingSecond(4*n, 3*n))]: n in [0..15]]; // Vincenzo Librandi, May 21 2025
-
Mathematica
Table[SeriesCoefficient[Product[1/(1-k*x), {k, 1, 3*n}], {x, 0, n}], {n, 0, 15}] Table[StirlingS2[4*n, 3*n], {n, 0, 15}] Table[SeriesCoefficient[(-1)^n/(Pochhammer[1 - 1/x, 3*n]*x^(3*n)), {x, 0, n}], {n, 0, 15}]
Formula
a(n) = Stirling2(4*n,3*n).
a(n) ~ (-1)^(3*n) * 4^(4*n) * n^(n - 1/2) / (sqrt(2*Pi*(1 + w)) * exp(n) * 3^(3*n + 1/2) * w^(3*n) * (4/3 + w)^n), where w = LambertW(-4/(3*exp(4/3))).