A383920 Smallest m such that sigma(m) >= n*m/2.
1, 2, 6, 24, 120, 1680, 27720, 720720, 122522400, 41902660800, 130429015516800, 3066842656354276800, 1970992304700453905270400, 168721307030313765796546413936000, 1897544233056092162003806758651798777216000, 8201519488959040182625924708238885435575055666675808000
Offset: 2
Keywords
Examples
From _Michael De Vlieger_, May 22 2025: (Start) Table of a(n), n = 2..10, showing prime power decomposition: Prime power factor exponent 111 n m = a(n) sigma(m) n*m/2 2357137 ------------------------------------------------ 2 1 1 1 0 3 2 3 3 1 4 6 12 12 11 5 24 60 60 31 6 120 360 360 311 7 1680 5952 5880 4111 8 27720 112320 110880 32111 9 720720 3249792 3243240 421111 10 122522400 614210688 612612000 5221111 (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 2..27
- T. D. Noe, An algorithm for finding the least k with sigma(k) >= nk
Programs
-
Mathematica
(* First, load function f from A025487, then *) nn = 12; s = Union@ Flatten@ f[nn + 4]; m = Length[s]; Monitor[Reap[Do[k = 1; While[And[DivisorSigma[1, #] < n*#/2 &[ s[[k]] ], k < m], k++]; If[k == m, Break[], Sow[s[[k]] ] ], {n, 2, nn}] ][[-1, 1]], n] (* Michael De Vlieger, May 21 2025 *)
-
PARI
a(n) = my(k=1); while (sigma(k) < k*n/2, k++); k;
-
PARI
ab(x) = sigma(x)/x; findpos(vca, val) = for (i=1, #vca -1, if ((sigma(vca[i])/vca[i] < val) && (sigma(vca[i+1])/vca[i+1] > val), return(i));); a(n) = if (n==1, return(0)); if (n==2, return(1)); my(val = n/2, vca = readvec("c:/gp/bfiles/b004490.txt"), vsa = readvec("c:/gp/bfiles/b004394.txt"), wc = select(x->(ab(x) == val), vca)); if (#wc, return(wc[1])); my(ipos = findpos(vca, val), c1 = vca[ipos], c2 = vca[ipos+1], ws = select(x->((x>c1) && (x<=c2)), vsa)); for (i=1, #ws, if (ab(ws[i]) >= val, return(ws[i])););
Comments