cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383942 a(n) = (8*10^(2n) - 10^(n+1) + 2) / 9.

Original entry on oeis.org

78, 8778, 887778, 88877778, 8888777778, 888887777778, 88888877777778, 8888888777777778, 888888887777777778, 88888888877777777778, 8888888888777777777778, 888888888887777777777778, 88888888888877777777777778, 8888888888888777777777777778
Offset: 1

Views

Author

David Radcliffe, Aug 18 2025

Keywords

Comments

This is one of four infinite families of triangular numbers consisting of two different digits. The other three families are A319170, A037156 (n>1), and A309597 (n>2).

Crossrefs

Programs

  • Mathematica
    A383942[n_] := (8*10^(2*n) - 10^(n+1) + 2)/9; Array[A383942, 15] (* or *)
    LinearRecurrence[{111, -1110, 1000}, {78, 8778, 887778}, 15] (* Paolo Xausa, Aug 27 2025 *)
  • Python
    def A383942(n): return (8*10**(2*n)-10**(n+1)+2)//9

Formula

a(n) = A000217(A073551(n+1)).
G.f.: 6*x*(13 + 20*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Stefano Spezia, Aug 19 2025