A383942 a(n) = (8*10^(2n) - 10^(n+1) + 2) / 9.
78, 8778, 887778, 88877778, 8888777778, 888887777778, 88888877777778, 8888888777777778, 888888887777777778, 88888888877777777778, 8888888888777777777778, 888888888887777777777778, 88888888888877777777777778, 8888888888888777777777777778
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..495
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Mathematica
A383942[n_] := (8*10^(2*n) - 10^(n+1) + 2)/9; Array[A383942, 15] (* or *) LinearRecurrence[{111, -1110, 1000}, {78, 8778, 887778}, 15] (* Paolo Xausa, Aug 27 2025 *)
-
Python
def A383942(n): return (8*10**(2*n)-10**(n+1)+2)//9
Formula
G.f.: 6*x*(13 + 20*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Stefano Spezia, Aug 19 2025
Comments