A383954 a(n) = Product_{i} (phi(p_i^e_i)-1) where n = Product_{i} p_i^e_i and phi is the Euler phi function.
1, 0, 1, 1, 3, 0, 5, 3, 5, 0, 9, 1, 11, 0, 3, 7, 15, 0, 17, 3, 5, 0, 21, 3, 19, 0, 17, 5, 27, 0, 29, 15, 9, 0, 15, 5, 35, 0, 11, 9, 39, 0, 41, 9, 15, 0, 45, 7, 41, 0, 15, 11, 51, 0, 27, 15, 17, 0, 57, 3, 59, 0, 25, 31, 33, 0, 65, 15, 21, 0, 69, 15, 71, 0, 19, 17, 45, 0, 77, 21
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- József Sándor and Krassimir Atanassov, Some new arithmetic functions, Notes on Number Theory and Discrete Mathematics, Volume 30, 2024, Number 4, Pages 851-856.
Programs
-
Mathematica
A383954[n_] := If[n == 1, 1, Times @@ (EulerPhi[Power @@@ FactorInteger[n]] - 1)]; Array[A383954, 100] (* Paolo Xausa, Aug 19 2025 *)
-
PARI
a(n) = my(f=factor(n)); prod(k=1, #f~, p=f[k,1]; eulerphi(f[k,1]^f[k,2])-1);
Formula
From Amiram Eldar, Aug 19 2025: (Start)
Multiplicative with a(p^e) = (p-1)*p^(e-1) - 1.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 3/p^s + 1/p^(2*s-1) + 1/p^(2*s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p+1) - (p+1)/p^2) = 0.39439177573628632634... . (End)
Comments