A383961 Square array read by upward antidiagonals: T(n,k) is the n-th number whose largest odd divisor is its k-th divisor, n >= 1, k >= 1.
1, 2, 3, 4, 5, 6, 8, 7, 9, 15, 16, 11, 10, 20, 18, 32, 13, 12, 21, 50, 36, 64, 17, 14, 27, 81, 45, 30, 128, 19, 22, 28, 88, 63, 42, 105, 256, 23, 24, 33, 98, 75, 54, 135, 60, 512, 29, 25, 35, 104, 99, 66, 165, 84, 120, 1024, 31, 26, 39, 136, 117, 70, 189, 108, 140, 90
Offset: 1
Examples
The corner 15 X 15 of the square array is as follows: 1, 3, 6, 15, 18, 36, 30, 105, 60, 120, 90, 315, 816, 1360, 180, ... 2, 5, 9, 20, 50, 45, 42, 135, 84, 140, 126, 324, 880, 1520, 210, ... 4, 7, 10, 21, 81, 63, 54, 165, 108, 168, 150, 432, 912, 1632, 252, ... 8, 11, 12, 27, 88, 75, 66, 189, 132, 220, 198, 440, 1040, 1760, 270, ... 16, 13, 14, 28, 98, 99, 70, 195, 156, 240, 216, 495, 1056, 1824, 300, ... 32, 17, 22, 33, 104, 117, 72, 200, 162, 260, 234, 520, 1104, 1840, 330, ... 64, 19, 24, 35, 136, 147, 78, 231, 204, 308, 264, 525, 1120, 1904, 378, ... 128, 23, 25, 39, 152, 153, 100, 255, 225, 340, 280, 528, 1144, 2000, 390, ... 256, 29, 26, 40, 176, 171, 102, 273, 228, 364, 294, 560, 1232, 2080, 396, ... 512, 31, 34, 44, 184, 175, 110, 285, 276, 380, 306, 585, 1248, 2128, 462, ... 1024, 37, 38, 51, 208, 207, 114, 297, 348, 405, 312, 616, 1392, 2208, 468, ... 2048, 41, 46, 52, 232, 243, 130, 345, 372, 460, 336, 624, 1456, 2288, 510, ... 4096, 43, 48, 55, 242, 245, 138, 351, 400, 476, 342, 675, 1458, 2320, 546, ... 8192, 47, 49, 56, 248, 261, 144, 357, 441, 480, 350, 680, 1488, 2464, 570, ... 16384, 53, 58, 57, 296, 272, 154, 375, 444, 500, 408, 693, 1496, 2480, 588, ... ...
Links
Crossrefs
Programs
-
Mathematica
f[n_] := If[OddQ[n], DivisorSigma[0, n], FirstPosition[Divisors[n], n/2^IntegerExponent[n, 2]][[1]]]; seq[m_] := Module[{t = Table[0, {m}, {m}], v = Table[0, {m}], c = 0, k = 1, i, j}, While[c < m*(m + 1)/2, i = f[k]; If[i <= m, j = v[[i]] + 1; If[j <= m - i + 1, t[[i]][[j]] = k; v[[i]]++; c++]]; k++]; Table[t[[j]][[i - j + 1]], {i, 1, m}, {j, 1, i}] // Flatten]; seq[11] (* Amiram Eldar, May 16 2025 *)
Comments