A383402 Smallest number whose largest odd divisor is its n-th divisor.
1, 3, 6, 15, 18, 36, 30, 105, 60, 120, 90, 315, 816, 1360, 180, 700, 450, 360, 720, 1008, 420, 1540, 630, 900, 840, 1080, 1620, 1680, 2160, 1800, 1890, 5280, 1260, 3240, 3150, 17325, 7200, 29120, 5670, 9072, 2520, 3960, 10296, 18144, 3780, 20020, 5040, 7920, 10800
Offset: 1
Keywords
Examples
The divisors of 18 are [1, 2, 3, 6, 9, 18] and the largest odd divisor is 9 and 9 is its 5th divisor, so a(5) = 18 because 18 the smallest number having that property.
Links
- David A. Corneth, Table of n, a(n) for n = 1..872
- David A. Corneth, PARI program
- David A. Corneth, Upper bounds on a(n) for n = 1..10000
- Michael De Vlieger, Prime Power Decomposition of A383402(n), n = 1..261.
Crossrefs
Programs
-
Mathematica
With[{t = Table[If[OddQ[n], DivisorSigma[0, n], FirstPosition[Divisors[n], n/2^IntegerExponent[n, 2]][[1]]], {n, 1, 30000}]}, TakeWhile[FirstPosition[t, #] & /@ Range[Max[t]] // Flatten, ! MissingQ[#] &]] (* Amiram Eldar, May 14 2025 *)
-
PARI
a(n) = my(k=1); while (select(x->(x==k/2^valuation(k,2)), divisors(k), 1)[1] != n, k++); k; \\ Michel Marcus, May 14 2025
-
PARI
\\ See Corneth link
Formula
Extensions
More terms from Amiram Eldar, May 14 2025
Comments