cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A383978 Primes with at least two identical trailing digits.

Original entry on oeis.org

11, 199, 211, 233, 277, 311, 433, 499, 577, 599, 677, 733, 811, 877, 911, 977, 1033, 1277, 1399, 1433, 1499, 1511, 1699, 1733, 1777, 1811, 1877, 1933, 1999, 2011, 2099, 2111, 2311, 2333, 2377, 2399, 2411, 2477, 2633, 2677, 2699, 2711, 2777, 2833, 2999, 3011, 3299
Offset: 1

Views

Author

Stefano Spezia, May 16 2025

Keywords

Crossrefs

Subsequence of A050758.
Cf. A061022 (variant).

Programs

  • Maple
    select(isprime, [seq(seq(i*100 + j*11, j = [1,3,7,9]),i=0..100)]); # Robert Israel, May 17 2025
  • Mathematica
    Select[Prime[Range[500]],Part[d=IntegerDigits[#],l=IntegerLength[#]]==Part[d,l-1] &]
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        yield from filter(isprime, (i+k for i in count(0, 100) for k in (11, 33, 77, 99)))
    print(list(islice(agen(), 50))) # Michael S. Branicky, May 20 2025

A384014 a(n) is the number of n-digit terms in A384013.

Original entry on oeis.org

0, 1, 16, 108, 834, 6893, 58659, 510839, 4515301, 40477023, 366751460, 3352789726, 30877698604, 286159371452, 2666303391801, 24959756192476, 234610874384116, 2213224276178123, 20945897352118544, 198802912201260034, 1891788092230264832, 18044365524165259927, 172479703095316537972
Offset: 1

Views

Author

Stefano Spezia, May 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]:=0; a[n_]:=Module[{count=0},For[k=Prime[PrimePi[10^(n-1)]+1], k<=Prime[PrimePi[10^n-1]],k=NextPrime[k],If[Part[d=IntegerDigits[k],1]==Part[d,2],count++]]; count]; Array[a,7]

Extensions

a(11)-a(23) from David Radcliffe, May 17 2025

A384016 a(n) is the number of n-digit terms in A384015.

Original entry on oeis.org

0, 1, 0, 0, 74, 673, 5851, 50977, 451608, 4048657, 36675547, 335269867, 3087739250, 28615970101, 266630103368, 2495975596632
Offset: 1

Views

Author

Stefano Spezia, May 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]:=0; a[n_]:=Module[{count=0},For[k=Prime[PrimePi[10^(n-1)]+1], k<=Prime[PrimePi[10^n-1]],k=NextPrime[k],If[Part[d=IntegerDigits[k],l=IntegerLength[k]]==Part[d,l-1] &&Part[d,1]==Part[d,2],count++]]; count]; Array[a,7]
  • Python
    from sympy import isprime
    def a(n):
        if n < 3: return n-1
        return sum(1 for i in range(1, 10) for j in range(i*11*10**(n-2), (i*11+1)*10**(n-2), 100) for k in (11, 33, 77, 99) if isprime(j+k))
    print([a(n) for n in range(1, 10)]) # Michael S. Branicky, May 19 2025

Extensions

a(11) from David Radcliffe, May 18 2025
a(12)-a(13) from Michael S. Branicky, May 19 2025
a(14) from Michael S. Branicky, May 22 2025
a(15) from Lyle Blosser, Aug 24 2025
a(16) from Lyle Blosser, Aug 30 2025
Showing 1-3 of 3 results.