A384003 Irregular triangle T(n,k), n >= 0, 0 <= k < 2^(n-1), where T(n,k) = Product_{j=0..n-1} prime(j+1)^((n-j)*d_j), where d_j is the bit with digit weight 2^j in the binary expansion of 2^(n-1)+k.
1, 2, 3, 12, 5, 40, 45, 360, 7, 112, 189, 3024, 175, 2800, 4725, 75600, 11, 352, 891, 28512, 1375, 44000, 111375, 3564000, 539, 17248, 43659, 1397088, 67375, 2156000, 5457375, 174636000, 13, 832, 3159, 202176, 8125, 520000, 1974375, 126360000, 4459, 285376, 1083537
Offset: 0
Examples
Table begins: n\k 0 1 2 3 4 5 6 7 ----------------------------------------------- 0: 1; 1: 2; 2: 3, 12; 3: 5, 40, 45, 360; 4: 7, 112, 189, 3024, 175, 2800, 4725, 75600; ... Table showing prime power decomposition of a(n), where A067255(a(n)) represents prime(i)^j | a(n), with j in the i-th position, replacing 0 with "." for visibility: n a(n) A067255(a(n)) -------------------------- 0 1 . 1 2 1 2 3 .1 3 12 21 4 5 ..1 5 40 3.1 6 45 .21 7 360 321 8 7 ...1 9 112 4..1 10 189 .3.1 11 3024 43.1 12 175 ..21 13 2800 4.21 14 4725 .321 15 75600 4321
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..16384 (rows n = 0..14, flattened)
- Michael De Vlieger, Log log scatterplot of a(n), n = 0..16384.
- Michael De Vlieger, Plot prime(i)^j at (x,y) = (n,i), n = 0..2047, 16X vertical exaggeration, with a color function representing j = 1 in black, j = 2 in red, j = 3 in orange, ..., j = 14 in magenta.
Programs
-
Mathematica
f[x_] := If[x == 1, {0}, Function[g, ReplacePart[Table[0, {PrimePi[f[[-1, 1]] ]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, g]]@ FactorInteger@ x]; Table[f[Reverse@ Range[Length[#]]*#] &@ Reverse@ IntegerDigits[n, 2], {n, 0, 120}]
Formula
T(0,0) = 1; T(1,0) = 2.
Otherwise, T(n,2k) = A003961(T(n-1,k)).
T(n,2k+1) = T(n,2k)*2^n.
T(n,0) = prime(n).
T(n,2^(n-1)-1) = A006939(n).
T(n,2^(n-2)) = A251720(n).
Using a(m) to denote a term of the linear sequence with offset 0: (Start)
Equivalently, for p = A000040(i), the i-th prime, p|a(m) iff p|A019565(m), in which case A060175(m,i) = j - i + 1, where j = PrimePi(gpf(A019565(m))) = A061395(A019565(m)).
(End)
For n > 0, A071178(T(n,k)) = 1.
Extensions
Name edited by Peter Munn, Aug 30 2025
Comments