A384010 Heinz numbers of integer partitions such that it is possible to choose a family of disjoint strict partitions, one of each conjugate part.
1, 2, 4, 6, 8, 12, 16, 18, 24, 27, 30, 32, 36, 48, 54, 60, 64, 72, 81, 90, 96, 108, 120, 128, 144, 150, 162, 180, 192
Offset: 1
Examples
The prime indices of 96 are {1,1,1,1,1,2}, conjugate (6,1), disjoint family (4,2,1), so 96 is in the sequence. The terms together with their prime indices begin: 1: {} 2: {1} 4: {1,1} 6: {1,2} 8: {1,1,1} 12: {1,1,2} 16: {1,1,1,1} 18: {1,2,2} 24: {1,1,1,2} 27: {2,2,2} 30: {1,2,3} 32: {1,1,1,1,1} 36: {1,1,2,2} 48: {1,1,1,1,2} 54: {1,2,2,2} 60: {1,1,2,3} 64: {1,1,1,1,1,1}
Crossrefs
Programs
-
Mathematica
pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],pof[conj[prix[#]]]!={}&]
Comments