A384011 Numbers k such that it is not possible to choose disjoint strict integer partitions of each conjugate prime index of k.
3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 3: {2} 5: {3} 7: {4} 9: {2,2} 10: {1,3} 11: {5} 13: {6} 14: {1,4} 15: {2,3} 17: {7} 19: {8} 20: {1,1,3} 21: {2,4} 22: {1,5} 23: {9} 25: {3,3} 26: {1,6} 28: {1,1,4}
Programs
-
Mathematica
pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],pof[conj[prix[#]]]=={}&]
Comments