A384038 Number of 2n X 2n matrices M over GF(2) such that the column space of M is equal to the null space of M.
1, 3, 210, 234360, 4047865920, 1092146608143360, 4650098142288472473600, 314462403262051153026062745600, 338960040818652280796119613717033779200, 5834618256563872511581456247120956565738854809600, 1605370810586153268821245248112723240374305354675084328960000
Offset: 0
Keywords
Examples
a(1) = 3 because there are 3 matrices of size 2 X 2 over GF(2) with the desired property: {{0, 0}, {1, 0}}, {{0, 1}, {0, 0}}, {{1, 1}, {1, 1}}.
Links
- D. G. Hoffman, Digraphs of finite linear transformations, Australasion Journal of Combinatorics,12: 225-238 (1995).
Programs
-
Mathematica
q = 2; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; Table[Product[2^(2 k) - 2^i, {i, 0, (2 k) - 1}]/aut[1, Table[2, {k}]], {k,0, 10}]
Comments