A384095 Numbers other than {10^a + 10^b + 1} and {10^a + 5*10^b, min(a, b) = 0} whose square has digit sum 9 and no trailing zero.
9, 18, 39, 45, 48, 249, 318, 321, 348, 351, 549, 1149, 1761, 4899, 10149, 14499, 375501
Offset: 1
Crossrefs
Programs
-
Maple
extend:= proc(a,d) local i,s; s:= convert(convert(a,base,10),`+`); op(select(t -> numtheory:-quadres(t,10^d)=1, [seq(i*10^(d-1)+a, i=0 .. 9 - s)])) end proc: istriv:= proc(n) local L; L:= subs(0=NULL,convert(n,base,10)); member(L, [[4],[5],[6],[1,1],[1,1,1],[1,2],[2,1],[1,5],[5,1]]) end proc: R:= NULL: A:= [1,4,5,6,9]: for d from 2 to 20 do A:= map(extend,A,d); V:= select(t -> t > 10^(d-1) and issqr(t) and convert(convert(t,base,10),`+`)=9, A); if V <> [] then V:= sort(remove(istriv,map(sqrt,V))); R:= R,op(V); fi od: R;# Robert Israel, Jun 15 2025
-
PARI
select( {is_A384095(n)=n%10 && sumdigits(n^2)==9 && !bittest(36938, fromdigits(Set(digits(n))))}, [1..10^5])
Comments