cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384116 Array read by antidiagonals: T(n,m) is the number of total dominating sets in the n X m rook graph K_n X K_m.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 4, 9, 4, 1, 1, 11, 39, 39, 11, 1, 1, 26, 183, 334, 183, 26, 1, 1, 57, 833, 3087, 3087, 833, 57, 1, 1, 120, 3629, 27472, 53731, 27472, 3629, 120, 1, 1, 247, 15291, 236127, 922515, 922515, 236127, 15291, 247, 1, 1, 502, 63051, 1975246, 15524639, 30844786, 15524639, 1975246, 63051, 502, 1
Offset: 0

Views

Author

Andrew Howroyd, May 19 2025

Keywords

Examples

			Array begins:
=================================================================
n\m | 0   1     2       3         4           5             6 ...
----+------------------------------------------------------------
  0 | 1   1     1       1         1           1             1 ...
  1 | 1   0     1       4        11          26            57 ...
  2 | 1   1     9      39       183         833          3629 ...
  3 | 1   4    39     334      3087       27472        236127 ...
  4 | 1  11   183    3087     53731      922515      15524639 ...
  5 | 1  26   833   27472    922515    30844786    1019569593 ...
  6 | 1  57  3629  236127  15524639  1019569593   66544564805 ...
  7 | 1 120 15291 1975246 256594143 33329148492 4314985562475 ...
  ...
		

Crossrefs

Main diagonal is A303208.
Column 0 is A000012.
Column 1 is A000295(n), n > 0.
Column 2 is A287063(n), n > 1.

Programs

  • PARI
    B(n,m) = {sum(i=0, min(n,m), (-1)^i*binomial(n,i)*binomial(m,i)*i!*(2^(n-i)-1)^(m-i))}
    T(n,m) = {B(n,m) - sum(i=1, m, (-1)^i*binomial(m,i)*B(m-i,n))}

Formula

T(n,m) = B(n,m) - Sum_{i=1..m} (-1)^i*binomial(m,i)*B(m-i,n), where B(n,m) = Sum_{i=0..m} (-1)^i*binomial(n,i)*binomial(m,i)*i!*(2^(n-i)-1)^(m-i).
T(n,m) = T(m,n).