A384131 Smallest positive number divisible by n that has n letters in US English, or 0 if none exists.
6, 4, 40, 12, 70, 56, 36, 100, 33, 300, 1000000001, 406, 150, 112, 170, 162, 418, 11020, 336, 528, 828, 4800, 3300, 1404, 1620, 1512, 1218, 1770, 1147, 1344, 1353, 2788, 3325, 3888, 12728, 13376, 13338, 103360, 22878, 23478, 27778, 101728, 103725, 111734, 111578
Offset: 3
References
- GCHQ, The GCHQ Puzzle Book, Penguin, 2016 (see p. 47).
Links
- Michael S. Branicky, Table of n, a(n) for n = 3..100 (terms 3..69 from Jason Bard)
Programs
-
Mathematica
mmax = 10^10; Do[m = n; While[StringLength[StringDelete[IntegerName[m, "Words"], {" ", "-", "\[Hyphen]", ","}]] != n, m += n; If[m > mmax, m = 0; Break[]]]; Print[m], {n, 3, 43}]
-
Python
from num2words import num2words from itertools import count, islice def b(n): return sum(1 for c in num2words(n).replace(" and", "") if c.isalpha()) def a(n): return next(k for k in count(n, n) if b(k) == n) print([a(n) for n in range(3, 13)]) # Michael S. Branicky, May 20 2025
Formula
a(n) >= A134629(n). - Michael S. Branicky, May 21 2025
Comments