A384179 Number of ways to choose strict integer partitions of each conjugate prime index of n.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 4, 1, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 1, 4, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 4, 2, 1, 2, 1, 3, 4, 1, 1, 2, 1, 1, 1
Offset: 1
Keywords
Examples
The prime indices of 180 are {1,1,2,2,3}, conjugate {5,3,1}, and we have choices: {{5},{3},{1}} {{5},{2,1},{1}} {{4,1},{3},{1}} {{4,1},{2,1},{1}} {{3,2},{3},{1}} {{3,2},{2,1},{1}} so a(180) = 6.
Programs
-
Mathematica
fop[y_]:=Join@@@Tuples[strptns/@y]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Length[fop[conj[prix[n]]]],{n,100}]
Comments