A384182 a(n) is the smallest integer k such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = k^4, where 0 < x < y < z < w has exactly n integer solutions.
6, 9, 15, 34, 20, 19, 66, 28, 36, 35, 26, 30, 355, 97, 44, 329, 151, 65, 590, 89, 48, 42, 129, 54, 70, 99, 56, 178, 580, 128, 110, 392, 107, 518, 63, 125, 90, 887, 242, 78, 100, 138, 105, 96, 235, 141, 281, 205, 326, 1094, 117, 108, 197, 860, 159, 174, 291, 134
Offset: 1
Keywords
Examples
a(3)=15, because 15^4 = 13^3 + 21^3 + 23^3 + 30^3 = 11^3 + 16^3 + 21^3 + 33^3 = 9^3 + 11^3 + 21^3 + 34^3 and no integer less than 15 has 3 solutions.
Links
- Zhining Yang, Table of n, a(n) for n = 1..130
Crossrefs
Cf. A383877.
Programs
-
Mathematica
s=Table[{k, Length@Select[PowersRepresentations[k^4, 4, 3], 0<#[[1]]<#[[2]]<#[[3]]<#[[4]]&]}, {k, 50}];a=Table[SelectFirst[s, #[[2]]==k&], {k, 6}][[All, 1]]
Comments