cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384211 a(n) is the number of distinct ways of representing n in any integer base >= 2 using only prime digits.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 2, 2, 2, 1, 4, 2, 3, 2, 3, 1, 6, 2, 3, 4, 4, 1, 6, 2, 5, 4, 5, 2, 7, 2, 7, 4, 5, 3, 8, 4, 9, 3, 7, 3, 12, 3, 6, 5, 6, 4, 11, 2, 9, 4, 9, 6, 13, 3, 11, 8, 12, 3, 12, 3, 13, 7, 8, 5, 14, 5, 13, 5, 11, 4, 15, 3, 13, 8, 10, 7, 15
Offset: 0

Views

Author

Felix Huber, May 23 2025

Keywords

Comments

The representations of n remain the same for bases greater than n, as they all consist solely of the digit n.

Examples

			The a(43) = 9 representations of [4,3] in base 10 using only prime digits are [2,2,3] in base 4, [5,3] in base 8, [3,7] in base 12, [2,13] in base 15, [2,11] in base 16, [2,7] in base 18, [2,5] in base 19, [2,3] in base 20 and [43] in bases >= 44.
		

Crossrefs

Programs

  • Maple
    A384211:=proc(n)
        local a,b,c;
        a:=0;
        for b from 2 to n+1 do
            c:=convert(n,'base',b);
            if select(isprime,c)=c then
                a:=a+1
            fi
        od;
        return a
    end proc;
    seq(A384211(n),n=0..87);
    A384211representations:=proc(n)
        local L,b,c;
        L:=[];
        for b from 2 to n+1 do
            c:=convert(n,'base',b);
            if select(isprime,c)=c then
                L:=[op(L),b,ListTools:-Reverse(c)]
            fi
        od;
        return op(L)
    end proc;
    A384211representations(43);
  • Mathematica
    a[n_] := Boole[PrimeQ[n]] + Count[Range[2, n-1], ?(AllTrue[IntegerDigits[n, #], PrimeQ] &)]; Array[a, 100 ,0] (* _Amiram Eldar, May 23 2025 *)
  • PARI
    a(n) = sum(k=2, n+1, my(d=digits(n, k)); #select(isprime, d) == #d); \\ Michel Marcus, May 26 2025
  • Python
    from sympy import isprime
    from sympy.ntheory import digits
    def a(n): return len(set(t for b in range(2, n+2) if all(map(isprime, (t:=tuple(digits(n, b)[1:]))))))
    print([a(n) for n in range(84)]) # Michael S. Branicky, May 23 2025