cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384216 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = n! * [x^n] (1 + k*x)^(n/k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 0, 6, 1, 1, -2, -3, 24, 1, 1, -4, 0, 0, 120, 1, 1, -6, 15, 40, 45, 720, 1, 1, -8, 42, 0, -280, 0, 5040, 1, 1, -10, 81, -264, -1155, 0, -1575, 40320, 1, 1, -12, 132, -896, 0, 20160, 24640, 0, 362880, 1, 1, -14, 195, -2040, 8645, 57456, -208845, -291200, 99225, 3628800
Offset: 0

Views

Author

Seiichi Manyama, May 22 2025

Keywords

Examples

			Square array begins:
    1,  1,    1,     1,     1,    1,       1, ...
    1,  1,    1,     1,     1,    1,       1, ...
    2,  0,   -2,    -4,    -6,   -8,     -10, ...
    6, -3,    0,    15,    42,   81,     132, ...
   24,  0,   40,     0,  -264, -896,   -2040, ...
  120, 45, -280, -1155,     0, 8645,   33120, ...
  720,  0,    0, 20160, 57456,    0, -459360, ...
		

Crossrefs

Columns k=3..5 give A282627(n+1)/2, A383996, A383997.
Cf. A303489.

Programs

  • PARI
    a(n, k) = prod(j=0, n-1, n-k*j);

Formula

A(n,k) = Product_{j=0..n-1} (n-k*j).
A(n,k) = k^n * FallingFactorial(n/k,n).
A(k*n,k) = 0 for n > 0 and k > 1.