A384233 Square array read by upward antidiagonals: T(n,k) is the n-th number whose largest odd noncomposite divisor is its k-th divisor, n >= 1, k >= 1.
1, 2, 3, 4, 5, 6, 8, 7, 10, 20, 16, 9, 12, 28, 42, 32, 11, 14, 30, 60, 84, 64, 13, 15, 40, 66, 132, 156, 128, 17, 18, 44, 78, 168, 204, 312, 256, 19, 21, 52, 88, 198, 228, 408, 684, 512, 23, 22, 56, 102, 210, 264, 456, 696, 1020, 1024, 25, 24, 68, 104, 220, 276, 468, 744, 1140, 1380
Offset: 1
Examples
The corner 15 X 15 of the square array is as follows: 1, 3, 6, 20, 42, 84, 156, 312, 684, 1020, 1380, 1860, 3480, 3720, 4920, ... 2, 5, 10, 28, 60, 132, 204, 408, 696, 1140, 1740, 2220, 3660, 4440, 5160, ... 4, 7, 12, 30, 66, 168, 228, 456, 744, 1332, 2040, 2460, 4020, 5580, 5640, ... 8, 9, 14, 40, 78, 198, 264, 468, 780, 1368, 2088, 2580, 4140, 6960, 6360, ... 16, 11, 15, 44, 88, 210, 276, 510, 816, 1392, 2232, 2664, 4260, 7224, 6660, ... 32, 13, 18, 52, 102, 220, 330, 552, 828, 1476, 2280, 2760, 4380, 7632, 7080, ... 64, 17, 21, 56, 104, 234, 342, 570, 888, 1488, 2436, 2820, 4740, 7896, 7380, ... 128, 19, 22, 68, 110, 252, 348, 612, 912, 1548, 2544, 2952, 4872, 8280, 7440, ... 256, 23, 24, 70, 114, 260, 372, 624, 930, 1560, 2604, 3096, 4980, 8496, 7740, ... 512, 25, 26, 76, 120, 272, 390, 660, 936, 1656, 2736, 3180, 5208, 8784, 8880, ... 1024, 27, 33, 80, 126, 304, 396, 690, 984, 1692, 2790, 3384, 5220, 8904, 9912, ... 2048, 29, 34, 90, 130, 306, 414, 792, 1032, 1710, 2832, 3420, 5256, 9030, 10248, ... 4096, 31, 35, 92, 136, 336, 420, 870, 1044, 1776, 2928, 3540, 5328, 9324, 10440, ... 8192, 37, 36, 99, 138, 340, 440, 920, 1104, 1908, 3060, 3612, 5340, 9648, 10512, ... 16384, 41, 38, 100, 140, 368, 444, 966, 1110, 1932, 3108, 3816, 5520, 9660, 10836, ... ... The divisors of 42 are [1, 2, 3, 6, 7, 14, 21, 42] and the largest odd noncomposite divisor is 7 and 7 is its 5th divisor, so T(1,5) = 42 because 42 the smallest number having that property.
Crossrefs
Programs
-
Mathematica
f[n_] := FirstPosition[Divisors[n], FactorInteger[n/2^IntegerExponent[n, 2]][[-1, 1]]][[1]]; seq[m_] := Module[{t = Table[0, {m}, {m}], v = Table[0, {m}], c = 0, k = 1, i, j}, While[c < m*(m + 1)/2, i = f[k]; If[i <= m, j = v[[i]] + 1; If[j <= m - i + 1, t[[i]][[j]] = k; v[[i]]++; c++]]; k++]; Table[t[[j]][[i - j + 1]], {i, 1, m}, {j, 1, i}] // Flatten]; seq[11] (* Amiram Eldar, May 23 2025 *)
Formula
Conjecture: T(n,2) = A061345(n).
Comments