cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385443 Expansion of e.g.f. (1/x) * Series_Reversion( x/(3*x + sqrt(9*x^2+1))^(1/3) ).

Original entry on oeis.org

1, 1, 3, 7, -55, -1215, -8645, 150535, 6200145, 73698625, -1986309325, -119693799225, -1993326710375, 72724743316225, 5768642653648875, 123556356142594375, -5685256808745889375, -559310285769833973375, -14644269999088713108125, 813361265343230663434375
Offset: 0

Views

Author

Seiichi Manyama, Jun 29 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 6^n*n!*binomial((4*n+1)/6, n)/(4*n+1);

Formula

E.g.f.: (1/x) * Series_Reversion( x * exp(-arcsinh(3*x)/3) ).
E.g.f.: ( (1/x) * Series_Reversion( x/(1 + 6*x)^(2/3) ) )^(1/4).
E.g.f. A(x) satisfies A(x) = exp( (1/3) * arcsinh(3*x*A(x)) ).
E.g.f. A(x) satisfies A(x) = (1 + 6*x*A(x)^4)^(1/6).
a(n) = 6^n * n! * binomial((4*n+1)/6,n)/(4*n+1).
a(n) = Sum_{k=0..n} (n+1)^(k-1) * (3*i)^(n-k) * A385343(n,k), where i is the imaginary unit.

A385444 Expansion of e.g.f. (1/x) * Series_Reversion( x/(4*x + sqrt(16*x^2+1))^(1/4) ).

Original entry on oeis.org

1, 1, 3, 0, -195, -2160, 21735, 1290240, 13253625, -758419200, -34777667925, 0, 59136015863925, 2148944878080000, -60019159896320625, -8741374232887296000, -200253365886518319375, 23678097149478739968000, 2107410008390562322321875, 0, -11628675802354427876266081875
Offset: 0

Views

Author

Seiichi Manyama, Jun 29 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 8^n*n!*binomial((5*n+1)/8, n)/(5*n+1);

Formula

E.g.f.: (1/x) * Series_Reversion( x * exp(-arcsinh(4*x)/4) ).
E.g.f.: ( (1/x) * Series_Reversion( x/(1 + 8*x)^(5/8) ) )^(1/5).
E.g.f. A(x) satisfies A(x) = exp( (1/4) * arcsinh(4*x*A(x)) ).
E.g.f. A(x) satisfies A(x) = (1 + 8*x*A(x)^5)^(1/8).
a(n) = 8^n * n! * binomial((5*n+1)/8,n)/(5*n+1).
a(n) = Sum_{k=0..n} (n+1)^(k-1) * (4*i)^(n-k) * A385343(n,k), where i is the imaginary unit.
a(8*n+3) = 0 for n >= 0.
Showing 1-2 of 2 results.