A384301 a(n) = Product_{k=0..2*n-1} (3*n+k-1).
1, 6, 1680, 1235520, 1764322560, 4151586700800, 14572069319808000, 71382386874839040000, 465322312113382563840000, 3894941973875807210323968000, 40716268141852504209197629440000, 519879261146393786614332810854400000, 7961721525959456256504412439642112000000
Offset: 0
Programs
-
PARI
a(n) = (2*n)!*binomial(5*n-2, 2*n);
Formula
a(n) = RisingFactorial(3*n-1,2*n).
a(n) = (2*n)! * [x^(2*n)] 1/(1 - x)^(3*n-1).
a(n) = (2*n)! * binomial(5*n-2,2*n).
D-finite with recurrence 3*(3*n-2)*(3*n-4)*a(n) -5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-6)*a(n-1)=0. - R. J. Mathar, May 26 2025