cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384267 G.f. A(x) satisfies A(x) = 1 + abs( x/A(x)^2 ).

Original entry on oeis.org

1, 1, 2, 1, 6, 13, 4, 80, 242, 109, 1702, 5177, 2208, 40348, 128560, 56864, 1052102, 3406333, 1509862, 28900645, 94971462, 42420281, 825816148, 2740269448, 1228678588, 24277298940, 81183221736, 36526643608, 729682028652, 2454721201940, 1107304048024, 22319301025880, 75450489469554
Offset: 0

Views

Author

Paul D. Hanna, Jun 19 2025

Keywords

Comments

Conjectures:
(C.1) a(n) == binomial(3*n-1,n)/(3*n-1) (mod 2) (cf. A006013).
(C.2) [x^(3*n+1)] x/A(x)^2 > 0, [x^(3*n+2)] x/A(x)^2 < 0, and [x^(3*n+3)] x/A(x)^2 < 0 for n >= 0.
(C.3) The values of a(n)/a(n-1) tend to a period-3 sequence of reals near [21.83826..., 3.53749..., 0.46127...] (the values at n = 5002..5004).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + x^3 + 6*x^4 + 13*x^5 + 4*x^6 + 80*x^7 + 242*x^8 + 109*x^9 + 1702*x^10 + 5177*x^11 + 2208*x^12 + ...
RELATED SERIES.
A(x) equals the series formed from the absolute values of the coefficients in 1 + x/A(x)^2 where
x/A(x)^2 = x - 2*x^2 - x^3 + 6*x^4 - 13*x^5 - 4*x^6 + 80*x^7 - 242*x^8 - 109*x^9 + 1702*x^10 - 5177*x^11 - 2208*x^12 +-- ...
notice that the signs in x/A(x)^2 seem to be {+,-,-} repeating.
SPECIFIC VALUES.
A(t) = 17/10 at t = 0.2988099109194334966744754680560903...
A(t) = 8/5 at t = 0.28632536002959676347841744332637502584281553236328...
A(t) = 3/2 at t = 0.26584952269781748463288503061262604182943155912168...
A(t) = 7/5 at t = 0.23679807527229400928334910529482907166586736528066...
A(t) = 4/3 at t = 0.21222131698512068142939257924460486238379301612052...
A(t) = 6/5 at t = 0.14851037601497632663099987292554419705752970437155...
A(1/4) = 1.4416840609369316144418746432100574811353758654573...
A(1/5) = 1.3040757997934088091953759590684948311334157108446...
A(1/6) = 1.2337286609104904159907289378298492254783023920577...
A(1/7) = 1.1900466603567900992777823995090950832516801703123...
A(1/8) = 1.1601356692672906064760109443886299674930778512606...
A(1/9) = 1.1383397014975021472515053785203604745989973570682...
A(1/10) = 1.1217447587000441822177506555087189442697776256039...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); for(i=1, n, A = 1 + x*Ser(abs(Vec(1/(A +x*O(x^n))^2))) ); polcoef(A, n)}
    for(n=0, 32, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1 + x * abs( 1/A(x)^2 ).
(2) A(x) = 1 + x * ( 2/A(w*x)^2 + 2/A(w^2*x)^2 - 1/A(x)^2 )/3, where w = exp(i*2*Pi/3) = -1/2 + sqrt(3)/2*i (conjecture); this is implied by conjecture (C.2).