A384267 G.f. A(x) satisfies A(x) = 1 + abs( x/A(x)^2 ).
1, 1, 2, 1, 6, 13, 4, 80, 242, 109, 1702, 5177, 2208, 40348, 128560, 56864, 1052102, 3406333, 1509862, 28900645, 94971462, 42420281, 825816148, 2740269448, 1228678588, 24277298940, 81183221736, 36526643608, 729682028652, 2454721201940, 1107304048024, 22319301025880, 75450489469554
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + x^3 + 6*x^4 + 13*x^5 + 4*x^6 + 80*x^7 + 242*x^8 + 109*x^9 + 1702*x^10 + 5177*x^11 + 2208*x^12 + ... RELATED SERIES. A(x) equals the series formed from the absolute values of the coefficients in 1 + x/A(x)^2 where x/A(x)^2 = x - 2*x^2 - x^3 + 6*x^4 - 13*x^5 - 4*x^6 + 80*x^7 - 242*x^8 - 109*x^9 + 1702*x^10 - 5177*x^11 - 2208*x^12 +-- ... notice that the signs in x/A(x)^2 seem to be {+,-,-} repeating. SPECIFIC VALUES. A(t) = 17/10 at t = 0.2988099109194334966744754680560903... A(t) = 8/5 at t = 0.28632536002959676347841744332637502584281553236328... A(t) = 3/2 at t = 0.26584952269781748463288503061262604182943155912168... A(t) = 7/5 at t = 0.23679807527229400928334910529482907166586736528066... A(t) = 4/3 at t = 0.21222131698512068142939257924460486238379301612052... A(t) = 6/5 at t = 0.14851037601497632663099987292554419705752970437155... A(1/4) = 1.4416840609369316144418746432100574811353758654573... A(1/5) = 1.3040757997934088091953759590684948311334157108446... A(1/6) = 1.2337286609104904159907289378298492254783023920577... A(1/7) = 1.1900466603567900992777823995090950832516801703123... A(1/8) = 1.1601356692672906064760109443886299674930778512606... A(1/9) = 1.1383397014975021472515053785203604745989973570682... A(1/10) = 1.1217447587000441822177506555087189442697776256039...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1000
Programs
-
PARI
{a(n) = my(A=1); for(i=1, n, A = 1 + x*Ser(abs(Vec(1/(A +x*O(x^n))^2))) ); polcoef(A, n)} for(n=0, 32, print1(a(n), ", "))
Formula
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1 + x * abs( 1/A(x)^2 ).
(2) A(x) = 1 + x * ( 2/A(w*x)^2 + 2/A(w^2*x)^2 - 1/A(x)^2 )/3, where w = exp(i*2*Pi/3) = -1/2 + sqrt(3)/2*i (conjecture); this is implied by conjecture (C.2).
Comments