cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384269 G.f. A(x) satisfies x = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 + x^n).

Original entry on oeis.org

1, 1, 2, 6, 16, 49, 154, 513, 1747, 6078, 21439, 76607, 276685, 1008781, 3707512, 13721086, 51088860, 191245836, 719333008, 2717229481, 10303797518, 39208957744, 149676496756, 573037914270, 2199735075908, 8464921506665, 32648239747059, 126185248269567, 488657718553676, 1895790377527674
Offset: 0

Views

Author

Paul D. Hanna, May 25 2025

Keywords

Comments

The g.f. utilizes the Jacobi triple product identity: Product_{n>=1} (1 - x^n/a)*(1 - x^(n-1)*a)*(1-x^n) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)/2) * a^n.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 49*x^5 + 154*x^6 + 513*x^7 + 1747*x^8 + 6078*x^9 + 21439*x^10 + ...
RELATED SERIES.
1/A(x) = 1 - x - x^2 - 3*x^3 - 5*x^4 - 16*x^5 - 45*x^6 - 155*x^7 - 512*x^8 - 1763*x^9 - 6084*x^10 + ...
SPECIFIC VALUES.
A(exp(-Pi)) = 1.0474973549949421045732567080496722542518531011526934631...
  where Sum_{n=-oo..+oo} (-1)^n * exp(-Pi*n*(n+1)/2) * A(exp(-Pi))^n = exp(-Pi) * (Pi/2)^(1/4) / gamma(3/4) = 0.03947933420376592813...
A(-exp(-Pi)) = 0.960086060200580366759936974556134222228793624085744940...
  where Sum_{n=-oo..+oo} (-1)^(n*(n-1)/2) * exp(-Pi*n*(n+1)/2) * A(-exp(-Pi))^n = -exp(-Pi) * Pi^(1/4) / gamma(3/4) = -0.04694910513068872743...
A(t) = 2 at t = 0.24484187571695922418922496399796775078115821427621282...
A(t) = 7/4 at t = 0.239324355731620083092236573970947000576283799760943...
A(t) = 5/3 at t = 0.234439889083627870257298020352799276294012688627782...
A(t) = 3/2 at t = 0.217134571709901433113197085617818478214816713922905...
A(t) = 4/3 at t = 0.183806911401666173138177455971709388630788740531594...
A(t) = 5/4 at t = 0.157416870441717618165825450612923233287765184975643...
A(1/5) = 1.401449039483961854381757985869052435618161722574956...
A(1/6) = 1.276318946972284528693666572724710434062725174240448...
A(1/7) = 1.213287805382388838362413216213677242108560133326140...
A(1/8) = 1.174388177498186580244775740286834758637341200438483...
A(1/9) = 1.147764942051942680447238410304951699474657455354304...
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constants {d,c}: *) {1/r, -s*Log[r]/2* Sqrt[((s-1)*(-2*r*(s - 1) * QPochhammer[s, r] * Derivative[0, 1][QPochhammer][-1, r] + QPochhammer[-1, r]^2 * QPochhammer[s, r]^2 * Derivative[0, 1][QPochhammer][1/s, r] + 2*(s-1)* QPochhammer[-1, r] * (QPochhammer[s, r] - r*Derivative[0, 1][QPochhammer][s, r])))/ (Pi*QPochhammer[-1, r] * QPochhammer[s, r] * (-s*Log[ r]^2 + (s-1)^2 * (QPolyGamma[1, -Log[s]/Log[r], r] + QPolyGamma[1, Log[s]/Log[r], r])))]} /. FindRoot[{QPochhammer[-1, r] * QPochhammer[1/s, r] * QPochhammer[s, r] == 2*r*(1 - s), s*Log[r] + (s-1) * (QPolyGamma[0, Log[s]/Log[r], r] - QPolyGamma[0, Log[1/s]/Log[r], r]) == 0}, {r, 1/4}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Jun 01 2025 *)
  • PARI
    {a(n) = my(A=[1,1]);  for(i=2,n, A=concat(A,0);
    A[#A] = polcoef(x - prod(n=1,#A, (1 - x^n*Ser(A)) * (1 - x^(n-1)/Ser(A)) * (1 + x^n) ),#A-1); ); H=A; A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas where theta_4(x) is a Jacobi elliptic function.
(1) x = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 + x^n).
(2) -x*A(x) = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 + x^n).
(3) x*theta_4(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 - x^n).
(4) -x*theta_4(x)*A(x) = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 - x^n).
(5.a) x*theta_4(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(5.b) x*theta_4(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)/2) / A(x)^n.
(6.a) -x*theta_4(x)*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)/2) * A(x)^n.
(6.b) -x*theta_4(x)*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n.
a(n) ~ c * d^n / n^(3/2), where d = 4.083846421711383847604673417919116998017... and c = 0.584432537831593677040363592052688856... - Vaclav Kotesovec, Jun 01 2025