A384272
G.f. A(x) satisfies -2*x = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 + x^n).
Original entry on oeis.org
1, 2, 2, 6, 16, 50, 144, 478, 1510, 5116, 17034, 58812, 202166, 709228, 2489546, 8848146, 31525526, 113236920, 407983964, 1478249454, 5372468156, 19607233026, 71758722172, 263480958508, 969856453650, 3579426292768, 13239549874552, 49078409375334, 182282423994240, 678289439131812, 2528257204808848
Offset: 0
G.f.: A(x) = 1 + 2*x + 2*x^2 + 6*x^3 + 16*x^4 + 50*x^5 + 144*x^6 + 478*x^7 + 1510*x^8 + 5116*x^9 + 17034*x^10 + 58812*x^11 + 202166*x^12 + ...
where
-2*x = (1 - x/A(x))*(1 - A(x))*(1+x) * (1 - x^2/A(x))*(1 - x*A(x))*(1+x^2) * (1 - x^3/A(x))*(1 - x^2*A(x))*(1+x^3) * (1 - x^4/A(x))*(1 - x^3*A(x))*(1+x^4) * (1 - x^5/A(x))*(1 - x^4*A(x))*(1+x^5) * ...
-
(* Calculation of constants {d,c}: *) With[{k = 2}, Chop[{1/r, (1/Sqrt[2*Pi])*(-1 + s)* Sqrt[(s^2*(-r + s)*Log[r]*((r - s)*Log[1 - r] - r*Log[r] + (r - s)*(QPolyGamma[0, -1 + Log[s]/Log[r], r] + r*Log[r]*(Derivative[0, 1][QPochhammer][-1, r]/ QPochhammer[-1, r] + Derivative[0, 1][QPochhammer][1/s, r]/ QPochhammer[1/s, r] + Derivative[0, 1][QPochhammer][s/r, r]/ QPochhammer[s/r, r])))) / (-2*s*(r + r^2 - 3*r*s + s^3)* Log[r]^2 + 2*(-1 + s)*(-r + s)*(-r + s^2)* Log[r]*(QPolyGamma[0, -Log[s]/Log[r], r] - QPolyGamma[0, -1 + Log[s]/Log[r], r]) + (r - s)^2*(-1 + s)^2*((QPolyGamma[0, -Log[s]/Log[r], r] - QPolyGamma[0, -1 + Log[s]/Log[r], r]) * (Log[r] - QPolyGamma[0, -Log[s]/Log[r], r] + QPolyGamma[0, -1 + Log[s]/Log[r], r]) + QPolyGamma[1, -Log[s]/Log[r], r] + QPolyGamma[1, -1 + Log[s]/Log[r], r]))]} /. FindRoot[{2*k* r + (r*s*QPochhammer[-1, r]*QPochhammer[1/s, r]* QPochhammer[s/r, r])/((r - s)*(-1 + s)) == 0, (-r + s^2)*Log[r] + (r - s)*(-1 + s) * QPolyGamma[0, Log[1/s]/Log[r], r] - (r - s)*(-1 + s)*QPolyGamma[0, Log[s/r]/Log[r], r] == 0}, {r, 1/4}, {s, 2}, WorkingPrecision -> 120]]] (* Vaclav Kotesovec, Jun 30 2025 *)
-
{a(n) = my(A=[1,2]); for(i=2,n, A=concat(A,0);
A[#A] = polcoef(2*x + prod(n=1,#A, (1 - x^n/Ser(A)) * (1 - x^(n-1)*Ser(A)) * (1 + x^n) ),#A-1); ); A[n+1]}
for(n=0,30,print1(a(n),", "))
A384273
G.f. A(x) satisfies -3*x = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 + x^n).
Original entry on oeis.org
1, 3, 3, 9, 39, 108, 387, 1581, 5196, 21573, 82596, 318279, 1303146, 5182389, 20919156, 86577264, 351929133, 1462075095, 6077250693, 25277372124, 106131459906, 445859648019, 1878449392365, 7955646845046, 33707865532680, 143344958486019, 610977896794104, 2608218534504888, 11162376089875158
Offset: 0
G.f.: A(x) = 1 + 3*x + 3*x^2 + 9*x^3 + 39*x^4 + 108*x^5 + 387*x^6 + 1581*x^7 + 5196*x^8 + 21573*x^9 + 82596*x^10 + 318279*x^11 + 1303146*x^12 + ...
where
-3*x = (1 - x/A(x))*(1 - A(x))*(1+x) * (1 - x^2/A(x))*(1 - x*A(x))*(1+x^2) * (1 - x^3/A(x))*(1 - x^2*A(x))*(1+x^3) * (1 - x^4/A(x))*(1 - x^3*A(x))*(1+x^4) * (1 - x^5/A(x))*(1 - x^4*A(x))*(1+x^5) * ...
-
(* Calculation of constants {d,c}: *) With[{k = 3}, Chop[{1/r, (1/Sqrt[2*Pi])*(-1 + s)* Sqrt[(s^2*(-r + s)*Log[r]*((r - s)*Log[1 - r] - r*Log[r] + (r - s)*(QPolyGamma[0, -1 + Log[s]/Log[r], r] + r*Log[r]*(Derivative[0, 1][QPochhammer][-1, r]/ QPochhammer[-1, r] + Derivative[0, 1][QPochhammer][1/s, r]/ QPochhammer[1/s, r] + Derivative[0, 1][QPochhammer][s/r, r]/ QPochhammer[s/r, r])))) / (-2*s*(r + r^2 - 3*r*s + s^3) * Log[r]^2 + 2*(-1 + s)*(-r + s)*(-r + s^2)* Log[r]*(QPolyGamma[0, -Log[s]/Log[r], r] - QPolyGamma[0, -1 + Log[s]/Log[r], r]) + (r - s)^2*(-1 + s)^2*((QPolyGamma[0, -Log[s]/Log[r], r] - QPolyGamma[0, -1 + Log[s]/Log[r], r]) * (Log[r] - QPolyGamma[0, -Log[s]/Log[r], r] + QPolyGamma[0, -1 + Log[s]/Log[r], r]) + QPolyGamma[1, -Log[s]/Log[r], r] + QPolyGamma[1, -1 + Log[s]/Log[r], r]))]} /. FindRoot[{2*k* r + (r*s*QPochhammer[-1, r]*QPochhammer[1/s, r] * QPochhammer[s/r, r])/((r - s)*(-1 + s)) == 0, (-r + s^2)*Log[r] + (r - s)*(-1 + s) * QPolyGamma[0, Log[1/s]/Log[r], r] - (r - s)*(-1 + s)*QPolyGamma[0, Log[s/r]/Log[r], r] == 0}, {r, 1/4}, {s, 2}, WorkingPrecision -> 120]]] (* Vaclav Kotesovec, Jun 30 2025 *)
-
{a(n) = my(A=[1,3]); for(i=2,n, A=concat(A,0);
A[#A] = polcoef(3*x + prod(n=1,#A, (1 - x^n/Ser(A)) * (1 - x^(n-1)*Ser(A)) * (1 + x^n) ),#A-1); ); A[n+1]}
for(n=0,30,print1(a(n),", "))
A384269
G.f. A(x) satisfies x = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 + x^n).
Original entry on oeis.org
1, 1, 2, 6, 16, 49, 154, 513, 1747, 6078, 21439, 76607, 276685, 1008781, 3707512, 13721086, 51088860, 191245836, 719333008, 2717229481, 10303797518, 39208957744, 149676496756, 573037914270, 2199735075908, 8464921506665, 32648239747059, 126185248269567, 488657718553676, 1895790377527674
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 49*x^5 + 154*x^6 + 513*x^7 + 1747*x^8 + 6078*x^9 + 21439*x^10 + ...
RELATED SERIES.
1/A(x) = 1 - x - x^2 - 3*x^3 - 5*x^4 - 16*x^5 - 45*x^6 - 155*x^7 - 512*x^8 - 1763*x^9 - 6084*x^10 + ...
SPECIFIC VALUES.
A(exp(-Pi)) = 1.0474973549949421045732567080496722542518531011526934631...
where Sum_{n=-oo..+oo} (-1)^n * exp(-Pi*n*(n+1)/2) * A(exp(-Pi))^n = exp(-Pi) * (Pi/2)^(1/4) / gamma(3/4) = 0.03947933420376592813...
A(-exp(-Pi)) = 0.960086060200580366759936974556134222228793624085744940...
where Sum_{n=-oo..+oo} (-1)^(n*(n-1)/2) * exp(-Pi*n*(n+1)/2) * A(-exp(-Pi))^n = -exp(-Pi) * Pi^(1/4) / gamma(3/4) = -0.04694910513068872743...
A(t) = 2 at t = 0.24484187571695922418922496399796775078115821427621282...
A(t) = 7/4 at t = 0.239324355731620083092236573970947000576283799760943...
A(t) = 5/3 at t = 0.234439889083627870257298020352799276294012688627782...
A(t) = 3/2 at t = 0.217134571709901433113197085617818478214816713922905...
A(t) = 4/3 at t = 0.183806911401666173138177455971709388630788740531594...
A(t) = 5/4 at t = 0.157416870441717618165825450612923233287765184975643...
A(1/5) = 1.401449039483961854381757985869052435618161722574956...
A(1/6) = 1.276318946972284528693666572724710434062725174240448...
A(1/7) = 1.213287805382388838362413216213677242108560133326140...
A(1/8) = 1.174388177498186580244775740286834758637341200438483...
A(1/9) = 1.147764942051942680447238410304951699474657455354304...
-
(* Calculation of constants {d,c}: *) {1/r, -s*Log[r]/2* Sqrt[((s-1)*(-2*r*(s - 1) * QPochhammer[s, r] * Derivative[0, 1][QPochhammer][-1, r] + QPochhammer[-1, r]^2 * QPochhammer[s, r]^2 * Derivative[0, 1][QPochhammer][1/s, r] + 2*(s-1)* QPochhammer[-1, r] * (QPochhammer[s, r] - r*Derivative[0, 1][QPochhammer][s, r])))/ (Pi*QPochhammer[-1, r] * QPochhammer[s, r] * (-s*Log[ r]^2 + (s-1)^2 * (QPolyGamma[1, -Log[s]/Log[r], r] + QPolyGamma[1, Log[s]/Log[r], r])))]} /. FindRoot[{QPochhammer[-1, r] * QPochhammer[1/s, r] * QPochhammer[s, r] == 2*r*(1 - s), s*Log[r] + (s-1) * (QPolyGamma[0, Log[s]/Log[r], r] - QPolyGamma[0, Log[1/s]/Log[r], r]) == 0}, {r, 1/4}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Jun 01 2025 *)
-
{a(n) = my(A=[1,1]); for(i=2,n, A=concat(A,0);
A[#A] = polcoef(x - prod(n=1,#A, (1 - x^n*Ser(A)) * (1 - x^(n-1)/Ser(A)) * (1 + x^n) ),#A-1); ); H=A; A[n+1]}
for(n=0,30,print1(a(n),", "))
Showing 1-3 of 3 results.
Comments