cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384294 The number of Hamiltonian cycles in the concentric ring graph of order n.

Original entry on oeis.org

6, 12, 30, 34, 56, 108, 150, 244, 418, 642, 1040, 1712, 2726, 4412, 7174, 11554, 18696, 30292, 48950, 79204, 128202, 207362, 335520, 542936, 878406, 1421292, 2299758, 3720994, 6020696, 9741756, 15762390, 25504084, 41266546, 66770562, 108037040, 174807680, 282844646, 457652252, 740496982, 1198149154, 1938646056
Offset: 3

Views

Author

Don Knuth, May 24 2025

Keywords

Comments

The concentric ring graph of order n is a cubic graph with 4n vertices and 6n edges. If we name the vertices a_j,b_j,c_j,d_j for 0<=j
When n=5 it is isomorphic to the graph of the dodecahedron, which Hamilton used when he first considered "Hamiltonian cycles".

Examples

			The a[3]=6 cycles when n=3 are:
  a0--a1--a2--b2--c1--b1--c0--d0--d1--d2--c2--b0--a0,
  a0--a1--a2--b2--c2--d2--d0--d1--c1--b1--c0--b0--a0,
  a0--a1--b1--c0--b0--c2--d2--d0--d1--c1--b2--a2--a0,
  a0--a1--b1--c1--d1--d2--d0--c0--b0--c2--b2--a2--a0,
  a0--b0--c0--d0--d1--d2--c2--b2--c1--b1--a1--a2--a0,
  a0--b0--c2--b2--c1--d1--d2--d0--c0--b1--a1--a2--a0.
		

References

  • Donald E. Knuth, Prefascicle 8a of The Art of Computer Programming (planned to become part of Volume 4C).

Crossrefs

Cf. A000032 (Lucas numbers).

Programs

  • Mathematica
    a[n_]:=2LucasL[n]-2+If[Mod[n, 3]==2, 2n, 0]; Array[a,41,3]

Formula

a(n) = 2*Lucas(n) - 2 + 2*n*[Mod(n,3)==2], where [ ] denotes the Iverson bracket.
G.f.: -2*x^3*(3+3*x+6*x^2-10*x^3-10*x^4-3*x^5+4*x^6+4*x^7) / ( (x^2+x-1)*(x-1)^2*(1+x+x^2)^2 ). - R. J. Mathar, May 26 2025