A384320 Heinz numbers of integer partitions whose distinct parts are maximally refined.
1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 42, 45, 48, 50, 54, 56, 60, 64, 66, 70, 72, 75, 78, 80, 81, 84, 90, 96, 98, 100, 105, 108, 110, 112, 120, 126, 128, 132, 135, 140, 144, 150, 156, 160, 162, 168, 180, 182, 192, 196
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 3: {2} 4: {1,1} 6: {1,2} 8: {1,1,1} 9: {2,2} 10: {1,3} 12: {1,1,2} 14: {1,4} 15: {2,3} 16: {1,1,1,1} 18: {1,2,2} 20: {1,1,3} 24: {1,1,1,2} 27: {2,2,2} 28: {1,1,4} 30: {1,2,3} 32: {1,1,1,1,1}
Crossrefs
Partitions of this type are counted by A384392.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]]; Select[Range[20],With[{y=Union[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]=={}]&]
Comments