A384322 Heinz numbers of strict integer partitions with more than one possible way to choose disjoint strict partitions of each part, i.e., strict partitions that can be properly refined.
5, 7, 11, 13, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 111, 113, 114, 115, 118, 119, 122
Offset: 1
Keywords
Examples
The strict partition (7,2,1) with Heinz number 102 can be properly refined into (4,3,2,1), so 102 is in the sequence. The terms together with their prime indices begin: 5: {3} 46: {1,9} 85: {3,7} 7: {4} 47: {15} 86: {1,14} 11: {5} 51: {2,7} 87: {2,10} 13: {6} 53: {16} 89: {24} 17: {7} 55: {3,5} 91: {4,6} 19: {8} 57: {2,8} 93: {2,11} 21: {2,4} 58: {1,10} 94: {1,15} 22: {1,5} 59: {17} 95: {3,8} 23: {9} 61: {18} 97: {25} 26: {1,6} 62: {1,11} 101: {26} 29: {10} 65: {3,6} 102: {1,2,7} 31: {11} 67: {19} 103: {27} 33: {2,5} 69: {2,9} 106: {1,16} 34: {1,7} 71: {20} 107: {28} 35: {3,4} 73: {21} 109: {29} 37: {12} 74: {1,12} 111: {2,12} 38: {1,8} 77: {4,5} 113: {30} 39: {2,6} 79: {22} 114: {1,2,8} 41: {13} 82: {1,13} 115: {3,9} 43: {14} 83: {23} 118: {1,17}
Crossrefs
Partitions of this type are counted by A384318.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&]; Select[Range[100],UnsameQ@@prix[#]&&Length[pof[prix[#]]]>1&]