A384323 Number of integer partitions of n with exactly two possible ways to choose disjoint strict partitions of each part.
0, 0, 0, 1, 1, 0, 3, 3, 2, 0, 6, 6, 6, 6, 4, 10, 10, 14, 16, 15, 16, 17, 20, 25, 27, 28, 37, 43, 31, 42, 44
Offset: 0
Examples
For y = (4,3,3) we have two ways: ((4),(3),(2,1)) and ((4),(2,1),(3)), so y is counted under a(10). The a(0) = 0 through a(15) = 10 partitions: . . . 3 4 . 33 43 44 . 433 533 543 544 554 5433 42 52 62 442 542 552 553 644 5442 51 61 532 551 633 652 662 5532 541 632 732 661 833 5541 631 731 741 733 6432 721 821 831 832 6531 7431 7521 8421 9321
Crossrefs
Programs
-
Mathematica
pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&]; Table[Length[Select[IntegerPartitions[n],Length[pof[#]]==2&]],{n,0,15}]